Содержание
Иллюстрации - 2
Таблицы и схемы - 0
Влияние дополнительного светодиодного освещения на физиологические аспекты фотосинтеза у растительных культур

Спецвыпуск «Международная научно-техническая конференция по применению светодиодных фитооблучателей»

Дата публикации 01/12/2019
Страница 32-32

Купить PDF - ₽400

Влияние дополнительного светодиодного освещения на физиологические аспекты фотосинтеза у растительных культур
Авторы статьи:
Рю Мацуда (Ryo Matsuda)

Рю Мацуда (Ryo Matsuda), кандидат наук, в 2007 г. закончил Токийский Университет (Япония). В настоящее время является доцентом кафедры биологической и экологической инженерии Высшей школы сельскохозяйственных и естественных наук Университета Токио

Аннотация
В последнее время СД всё чаще рассматриваются в качестве источников света для дополнительного освещения (ДО) в теплицах. В настоящей статье приведены некоторые из наших лабораторных экспериментальных исследований влияния светодиодного освещения на физиологические аспекты фотосинтеза в отношении внутриканального освещения и ночного ДО. Во-первых, упоминается влияние ДО зрелых листьев на фотосинтез как зрелых, так и молодых листьев. Далее описывается влияние спектрального распределения ночного ДО на повреждение листа в результате непрерывного воздействия света. Кроме того, отмечается возможное влияние спектрального распределения на рост и измерения фотосинтеза.
Список использованной литературы
1. Lu N., Mitchell C.A. Supplemental lighting for greenhouse-grown fruiting vegetables // LED Lighting for Urban Agriculture, Springer Science+Business Media, Singapore, 2016. pp.219–232.
2. Heuvelink E., Bakker M.J., Hogendonk L., Janse J., Kaarsemaker R., Maaswinkel R. Horticultural lighting in the Netherlands: new developments // Acta Horticulturae.– 2006. – Т. 711. – С. 23–33.
3. Prikuperts L.B. Technological lighting for agro-industrial installations in Russia // Light & Engineering.– 2017. – Т. 26.– #1. – С .7–17.
4. Massa G.D., Kim H.H., Wheeler R.M., Mitchell C.A. Plant productivity in response to LD lighting. HortScience.– 2008. – Т. 43.– № 7. – С .1951–1956.
5. Morrow R.C. LED lighting in horticulture // HortScience.– 2008. – Т. 43.– № 7. – С. 1947–1950.
6. Nelson J.A., Bugbee B. Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures // PLoS One.– 2014. – Т. 9.– № 6.
7. Fujiwara K. Basics of LEDs for plant cultivation // LED Lighting for Urban Agriculture // Springer Science+Business Media. – Singapore.– 2016. – С. 377–393.
8. Goto E. Measurement of photonmetric and radiometric characteristics of LEDs for plant cultivation // LED Lighting for Urban Agriculture, Springer Science+Business Media. – Singapore.– 2016. – С. 395–402.
9. Fujiwara K. Light sources. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production // Academic Press. – London.– 2015. – С. 118–218.
10. Trouwborst G., Oosterkamp J., Hogewoning S.W., Harbinson J., van Ieperen W. The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy // Physiologia Plantarum.– 2010. – Т. 138. – С. 289–300.
11. Monsi M., Saeki T. On the factor light in plant communities and its importance for matter production // Annals of Botany.– 2005. – Т. 95.– № 3. – С. 549–567.
12. Hikosaka K. Effects of leaf age, nitrogen nutrition and photon flux density on the organization of the photosynthetic apparatus in leaves of a vine (Ipomoea tricolor Cav.) grown horizontally to avoid mutual shading of leaves // Planta.– 1996. – Т. 198. – С. 144–150.
13. Trouwborst G., Hogewoning S.W., Harbinson J., van Ieperen W. The influence of light intensity and leaf age on the photosynthetic capacity of leaves within a tomato canopy // The Journal of Horticultural Science and Biotechnology.– 2011. – Т. 86.– № 4. – С. 403–407.
14. Dueck T.A., Janse J., Eveleens B.A., Kempkes F.L.K., Marcelis L.F.M. Growth of tomatoes under hybrid LED and HPS lighting // Acta Horticulturae.– 2012. – Т. 952. – С. 335–342.
15. Lu N., Maruo T., Johkan M., Hohjo M., Tsukagoshi S., Ito Y., Ichimura T., Shinohara Y. Effects of supplemental lighting with light-emitting diodes (LEDs) on tomato yield and quality of single-truss tomato plants grown at high planting density // Environment Control in Biology.– 2012. – Т. 50.– № 1. – С. 63–74.
16. Deram P., Lefsrud M.G., Orsat V. Supplemental lighting orientation and red-to-blue ratio of light-emitting diodes for greenhouse tomato production // HortScience.– 2014. – Т. 49.– № 4. – С. 448–452.
17. Dzakovich M.P., Gómez C., Mitchell C.A. Tomatoes grown with light-emitting diodes or high-pressure sodium supplemental lights have similar fruit-quality attributes // HortScience.– 2015. – Т. 50.– № 10. – С. 1498–1502.
18. Gómez C., Mitchell C.A. In search of an optimized supplemental lighting spectrum for greenhouse tomato production with intracanopy lighting // Acta Horticulturae.– 2016. – Т. 1134. – С. 57–62.
19. Tewolde F.T., Lu N., Shiina K., Maruo T., Takagaki M., Kozai T., Yamori W. Nighttime supplemental LED inter-lighting improves growth and yield of single-truss tomatoes by enhancing photosynthesis in both winter and summer // Frontiers in Plant Science.– 2016. – Т. 7.
20. Gómez C., Mitchell C.A. Physiological and productivity responses of high-wire tomato as affected by supplemental light source and distribution within the canopy // Journal of the American Society for Horticultural Science.– 2016. – Т. 141.– № 2. – С. 196–208.
21. Tewolde F.T., Shiina K., Maruo T., Takagaki M., Kozai T., Yamori W. Supplemental LED inter-lighting compensates for a shortage of light for plant growth and yield under the lack of sunshine // PLoS One.– 2018. – Т. 13.– № 11.
22. Kaiser E., Ouzounis T., Giday H., Schipper R., Heuvelink E., Marcelis L.F.M. Adding blue to red supplemental light increases biomass and yield of greenhouse-grown tomatoes, but only to an optimum // Frontiers in Plant Science.– 2019. – Т. 9.– 2002.
23. Hao X., Zheng J.M., Little C., Khosla S. LED inter-lighting in year-round greenhouse mini-cucumber production // Acta Horticulturae.– 2012. – Т. 956. – С. 335–340.
24. Särkka L.E., Jokinen K., Ottosen C.O., Kaukoranta T. Effects of HPS and LED lighting on cucumber leaf photosynthesis, light quality penetration and temperature in the canopy, plant morphology and yield // Agricultural and Food Science.– 2017. – Т. 26. – С. 102–110.
25. Jokinen K., Särkkä L.E., Näkkilä J. Improving sweet pepper productivity by LED interlighting // Acta Horticulturae.– 2012. – Т. 956. – С. 59–66.
26. Joshi N.C., Ratner K., Eidelman O., Bednarczyk D., Zur N., Many Y., Shahak Y., Aviv-Sharon E., Achiam M., Gilad Z., Charuvi D. Effects of daytime intra-canopy LED illumination on photosynthesis and productivity of bell pepper grown in protected cultivation // Scientia Horticulturae.– 2019. – Т. 250. – С. 81–88.
27. Matsuda R., Ohashi-Kaneko K., Fujiwara K., Goto E., Kurata K. Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light // Plant and Cell Physiology.– 2004. – Т. 45.– № 12. – С. 1870–1874.
28. Hogewoning S.W., Trouwborst G., Maljaars H., Poorter H., van Ieperen W., Harbinson J. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light // Journal of Experimental Botany.– 2010. – Т. 61.– № 11. – С. 3107–3117.
29. Murakami K., Matsuda R., Fujiwara K. Effects of supplemental lighting to a lower leaf using light-emitting diodes with different spectra on the leaf photosynthetic rate in sweet pepper // Journal of Agricultural Meteorology.– 2013. – Т. 69.– № 2. – С. 55–63.
30. McCree K.J. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants // Agricultural Meteorology.– 1972. – Т. 9. – С. 191–216.
31. Matsuda R., Murakami K. Supplemental Light- and CO2-dependent systemic regulation of photosynthesis. In: U. Lüttge et al. (eds.) Progress in Botany 77 // Springer International Publishing. – Switzerland.– 2016. – С. 151–166.
32. Schoch P.G., Zinsou C., Sibi M. Dependence of the stomatal index on environmental factors during stomatal differentiation in leaves of Vigna sinensis L. 1. Effect of light intensity // Journal of Experimental Botany.– 1980. – Т. 31.– № 124. – С. 1211–1216.
33. Lake J.A., Quick W.P., Beerling D.J., Woodward F.I. Plant development: signals from mature to new leaves // Nature.– 2001. – Т. 411. – С. 154.
34. Coupe S.A., Palmer B.G., Lake J.A., Overy S.A., Oxborough K., Woodward F.I., Gray J.E., Quick W.P. Systemic signalling of environmental cues in Arabidopsis leaves // Journal of Experimental Botany.– 2006. – Т. 57.– № 2. – С. 329–341.
35. Thomas P.W., Woodward F.I., Quick W.P. Systemic irradiance signalling in tobacco // New Phytologist.– 2003. – Т. 161. – С. 193–198.
36. Jiang C.D., Wang X., Gao H.Y., Shi L., Chow W.S. Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum // Plant Physiology.– 2011. – Т. 155. – С. 1416–1424.
37. Yano S., Terashima I. Separate localization of light signal perception for sun or shade type chloroplast and palisade tissue differentiation in Chenopodium album // Plant and Cell Physiology.– 2001. – Т. 42.– № 12. – С. 1303–1310.
38. Araya T., Noguchi K., Terashima I. Manipulation of light and CO2 environments of the primary leaves of bean (Phaseolus vulgaris L.) affects photosynthesis in both the primary and the first trifoliate leaves: involvement of systemic regulation // Plant Cell, and Environment.– 2008. – Т. 31. – С. 50–61.
39. Murakami K., Matsuda R., Fujiwara K. Light-induced systemic regulation of photosynthesis in primary and trifoliate leaves of Phaseolus vulgaris: effects of photosynthetic photon flux density (PPFD) versus spectrum // Plant Biology.– 2014. – Т. 16. – С. 16–21.
40. Hillman W.S. Injury of tomato plants by continuous light and unfavorable photoperiodic cycles // American Journal of Botany.– 1956. – Т. 43.– № 2. – С. 89–96.
41. Velez-Ramirez A.I., van Ieperen W., Vreugdenhil D., van Poppel P.M.J.A., Heuvelink E., Millenaar F.F. A single locus confers tolerance to continuous light and allows substantial yield increase in tomato // Nature Communications.– 2014. – Т. 5. – С. 45–49.
42. Velez-Ramirez A.I., van Ieperen W., Vreugdenhil D., Millenaar F.F. Plants under continuous light // Trends in Plant Science.– 2011. – Т. 16.– № 6. – С. 310–318.
43. Globig S., Rosen I., Janes H.W. Continuous light effects on photosynthesis and carbon metabolism in tomato // Acta Horticulturae.– 1997. – Т. 418. – С. 141–152.
44. Murage E.N., Watashiro N., Masuda M. Influence of light quality, PPFD and temperature on leaf chlorosis of eggplants grown under continuous illumination // Scientia Horticulturae.– 1997. – Т. 68. – С. 73–82.
45. Demers D.A., Gosselin A. Growing greenhouse tomato and sweet pepper under supplemental lighting: optimal photoperiod, negative effects of long photoperiod and their causes // Acta Horticulturae.– 2002. – Т. 580. – С. 83–88.
46. Matsuda R., Yamano T., Murakami K., Fujiwara K. Effects of spectral distribution and photosynthetic photon flux density for overnight LED light irradiation on tomato seedling growth and leaf injury // Scientia Horticulturae.– 2016. – Т. 198. – С. 363–369.
47. Velez-Ramirez A.I., Dünner-Planella G., Vreugdenhil D., Millenaar F.F., van Ieperen W. On the induction of injury in tomato under continuous light: circadian asynchrony as the main triggering factor // Functional Plant Biology.– 2017. – Т. 44. – С. 597–611.
48. Pham M.D., Hwang H., Park S.W., Cui M., Lee H., Chun C. Leaf chlorosis, epinasty, carbohydrate contents and growth of tomato show different responses to the red/blue wavelength ratio under continuous light // Plant Physiology and Biochemistry.– 2019. – Т. 141. – С. 477–486.
49. Hakala M., Tuominen I., Keränen M., Tyystjärvi T., Tyystjärvi E. Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem II // Biochimica et Biophysica Acta.– 2005. – Т. 1706.– № 1–2. – С .68–80.
50. Murakami K., Matsuda R., Fujiwara K. Interaction between the spectral photon flux density distributions of light during growth and for measurements in net photosynthetic rates of cucumber leaves // Physiologia Plantarum.– 2016. – Т. 158. – С. 213–224.
51. Fujiwara K., Sawada T. Design and development of an LED-artificial sunlight source system prototype capable of controlling relative spectral power distribution // Journal of Light and Visual Environment.– 2006. – С. 30. – С. 170–176.
52. Fujiwara K., Yano A., Eijima K. Design and development of a plant-response experimental light-source system with LEDs of five peak wavelengths // Journal of Light and Visual Environment.– 2011. – Т. 35. – С. 117–122.
53. Fujiwara K., Yano A., Eijima K. Second-generation LED-artificial sunlight source system available for light effects research in biological and agricultural sciences // Proceedings of the 7th LuxPacifica2013. – Bangkok. – Thailand.– 2013. – С. 140–145.
54. Murakami K., Matsuda R., Fujiwara K. A basis for selecting light spectral distribution for evaluating leaf photosynthetic rates of plants grown under different light spectral distributions // Environmental Control in Biology.– 2017. – Т. 55.– № 1. – С. 1–6.
Ключевые слова
Выберите вариант доступа к этой статье

Купить

Рекомендуемые статьи