Содержание
Иллюстрации - 8
Таблицы и схемы - 5
Термический анализ радиаторов и кристаллов мощных светодиодных модулей при разных материалах теплового интерфейса«СВЕТОТЕХНИКА», 2020, № 4

Журнал «Светотехника» №4

Дата публикации 17/08/2020
Страница 80-88

PDF

Термический анализ радиаторов и кристаллов мощных светодиодных модулей при разных материалах теплового интерфейса«СВЕТОТЕХНИКА», 2020, № 4
Авторы статьи:
Дебашис Раул (Debashis Raul), Гош Камалика (Ghosh Kamalika)

Дебашис Раул (Debashis Raul), M.E. Приглашённый преподаватель и старший научный сотрудник светотехнической школы факультета технического проектирования и электротехники Джадавпурского университета

Гош Камалика (Ghosh Kamalika), Ph. D., пожизненный член Института инженеров Индии, Индийского общества инженеров по освещению и др. Имеет 20‑летний опыт работы на производстве и 23‑летний опыт работы в академической сфере. Опубликовала около 100 статей в национальных и международных журналах и конференция

Аннотация
Оптические характеристики и надёжность светодиодов (СД) напрямую зависят от их самонагрева. Важное значение имеет рассеяние в окружающее пространство тепла, которое вырабатывается СД, и обеспечение таких же, как заявленные производителями, характеристик СД источников света. Тепловые интерфейсы размещают между радиатором и источником света для уменьшения контактного сопротивленияна границе между подложкой и радиатором СД модуля. В данной работе проведена оценка материалов тепловых интерфейсов (МТИ). При этом рассмотрены как характеристики применяемых на практике МТИ, так и связанные с их использованием проблемы. Это исследование позволит рассчитывать распределение температуры радиатора при использовании МТИ разных типов с разными значениями теплопроводности, определять возможности радиатора в части рассеяния тепла и соответствующим образом конструировать радиатор. Кроме того, при помощи моделирующего пакета программ COMSOL применительно к СД матрицам с бескорпусным монтажом кристаллов на печатной плате (CoB СДМ) проведено исследование имеющих разную толщину МТИ при разных значениях входного тока. Полученные результаты говорят о том, что при увеличении входного тока и толщины слоя МТИ имеет место увеличение температуры p-n-перехода и уменьшение срока службы СДМ.
Список использованной литературы
1. Narendran, N., Maliyagoda, N., Bierman, A., Pysar, R., Overington, M. Characterizing White LEDs for General Illumination Applications // SPIE Photonics West Conference, Jan, 2000, San Jose, CA. – P. 3938–3939.
2. Arika, M., Beckerb, C., Weaverb, S., Petroskic, J. Thermal Management of LEDs: Package to System // 3rd Int. Conf. on Solid State Lighting, SPIE. Vol. 5187, doi:10.1117/12.512731(2004)
3. Lu, G., Hao, M., Lai, C., Yao, B. Thermal analysis and reliability evaluation on high power Flip chip LED // IEEE conf., China, 2015. ISBN: 978–1–5090–0175–0.
4. Kang, J.-M., Kim, J.-W., Choi, J.-H., Kim, D.-H., Kwon, H.-K. Lifetime estimation of high-power blue light-emitting diode chips //Microelectron. Reliab. – 2009. – Vol. 49. – P. 1231–1235.
5. Meneghini, M., Tazzoli, A., Mura, G., Meneghesso, G., Zanoni, E. A review on the physical mechanisms that limit the reliability of GaN-based LEDs // IEEE Trans. Electron Devices. – 2010. – Vol. 57. – P. 108–118.
6. Elger, G., Hanss, A., Schmid, M., Wipiejewski, T. Application of thermal analysis for the development of reliable high power LED modules // Solid State Lighting (SSLCHINA), 2014, 11th China International Forum, ISBN-978–1–4799–6696–7, pp: 158–164, 2014.
7. Song, B.-M., Han, B., Lee, J.-H. Optimum design domain of LEDbased solid state lighting considering cost, energy consumption and reliability // Microelectron. Reliab. – 2013. – Vol. 53. – P. 435–442.
8. Krames, M. R., Shchekin, O. B., Mueller-Mach, R., Mueller, G. O., Zhou, L., Harbers, G., Craford, M.G. Status and Future of High-Power Light Emitting Diodes for Solid-State Lighting // J. Display Technol. – 2007. – Vol. 3, No. 2. – P. 160–175.
9. Lock, D.A., Hall, S. R.G., Prins, A.D., Crutchley, B.G., Kynaston, S., Sweeney, S.J. LED Junction Temperature Measurement Using Generated Photocurrent // Journal of Display Technology. – 2013. – Vol. 9, No. 5. – P. 396–401.
10. Chen, Q., Luo, X., Zhou, S., Liu, S. Dynamic junction temperature measurement for high power light emitting diodes // American Institute of Physics, Review of Scientific Instruments. – 2011. – Vol. 82. – P. 084904.
11. Lee, C.-Y., Ay Su, Liu, Y.-C., Fan, W.-Y., Hsieh, W.-J. In Situ Measurement of the Junction Temperature of Light Emitting Diodes Using a Flexible Micro Temperature Sensor // Sensors. – 2009. – Vol. 9, No. 7. – P. 5068–5075; ISSN1424–8220.
12. Ha, M., Graham, S. Development of a thermal resistance model for chip-on-board packaging of high power LED arrays // Microelectronics Reliability. – 2012. – Vol. 52. – P. 836–844.
13. Chernyakov, A.E., et al. Theoretical and Experimental Study of Thermal Management in High-Power AlInGaN LEDs // IEEE Conf. (EuroSimE2014), 978–1–4799–4790–4/14.
14. Kai Han, K., Liu, M., Fan, S., Shen, H. Improved Electrical Measurement Method for Junction Temperature of Light Emitting Diodes // PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN0033–2097, R. 88 NR3b/2012.
15. Christensen, A., Graham, S. Thermal effects in packaging high power light emitting diode arrays // Applied Thermal Engineering. – 2009. – Vol. 29. – P. 364–371. doi:10.1016/j.applthermaleng.2008.03.019.
16. Keppens, A., Ryckaert, W.R., Deconinck, G., Hanselaer, P. High power light-emitting diode junction temperature determination from current-voltage characteristics // Journal of Applied Physics. – 2008. – Vol. 104, No. 9. – P. 093104–93104–8.
17. Freisleben, J., Dzugan, T., Hamacek, A. Comparative Study of Printed Circuit Board Substrates used for Thermal Management of High Power LEDs // IEEE38th Int. Spring Seminar on Electronics Technology, 978–1–4799–8860–0, 2015.
18. Mitterhuber, L., et al. Investigation of the Temperature-Dependent Heat Path of an LED Module by Thermal Simulation and Design of Experiments // IEEE Therminic 2016–22nd Int. Workshop, ISBN978–1–5090–5450–3, 2016.
19. Guoguang, L., Shaohuaa, Y., Zhifenga, L. Failure analysis of LEDs // IEEE2011 Int. Symp. on Advanced Packaging Materials (APM 2011), 978–1–4673–0149–7/11, 2011.
20. Hsu, Y.C., et al. Failure Mechanisms Associated with Lens Shape of High-Power LED Modules in Aging Test // IEEE LEOS2007, P. 1092–8081.
21. Ghosh, K, Raul, D. Performance analysis of various types of high power light emitting diodes // Light and Engineering. – 2018. – Vol. 26, No. 1. – P. 91–98. doi.org/10.33383/2017–045.
22. Гхош К., Раул Д. Анализ эксплуатационных характеристик разнотипных светодиодных модулей // Светотехника. – 2017. – № 6. – С. 56–61.
23. Raul, D., Ghosh, K. Performance of chip-on-board and surface-mounted high-power LED luminaires at different relative humidities and temperatures // Lighting Research & Technology, doi: 10.1177/1477153518819040, 2018.
24. 25. Integrated Circuits Thermal Test Method Environmental Conditions – JEDEC Solid State Technology Association – JESD51–2A, January 2008.
26. Wang, F.-K., Chu, T.-P. Lifetime predictions of LED-based light bars by accelerated degradation test // Microelectron Reliability. – 2012. – Vol. 52, No. 7. – P. 1332–1336.
Ключевые слова
Рекомендуемые статьи