Содержание
Иллюстрации - 11
Таблицы и схемы - 3
Обобщённая модель динамической проводимости для газоразрядных ламп высокой интенсивности и её перспективное применение для разработки диммируемого электронного балласта «СВЕТОТЕХНИКА», 2021, №2

Журнал «Светотехника» №2

Дата публикации 20/04/2021
Страница 68-78

Купить PDF - ₽450

Обобщённая модель динамической проводимости для газоразрядных ламп высокой интенсивности и её перспективное применение для разработки диммируемого электронного балласта «СВЕТОТЕХНИКА», 2021, №2
Авторы статьи:
Бисвадип Гупта Бакши (Biswadeep Gupta Bakshi), Бисванат Рой (Biswanath Roy)

Бисвадип Гупта Бакши (Biswadeep Gupta Bakshi), Ph. D., доцент кафедры электротехники Технологического института Нарула, Калькутта, Индия. Область научных интересов: математическое моделирование газоразрядных ламп и СД, технология СД драйверов, вопросы качества электроэнергии в освещении и машинное обучения

Бисванат Рой (Biswanath Roy), Ph. D., преподаватель кафедры светотехники факультета электротехники Джадавпурского университета (ГТУ) с 2000 года, пожизненный член Индийского общества инженеров по освещению (Indian Society of Lighting Engineers, ISLE), пожизненный член Института инженеров Индии (The Institution of Engineers India, IEI)

Аннотация
Разработана обобщённая модель газоразрядной лампы высокой интенсивности (ГЛВИ) на основе динамической модели проводимости электрического разряда Фрэнсиса-Дамелинкура с заменой коэффициентов модели A, B, C, D четырьмя экспериментально определёнными коэффициентными функциями номинальной мощности лампы и среднеквадратичного напряжения питания. Проведена экспериментальная проверка этой модели, которая показывает максимальное значение погрешности около 5 %. Кроме того, проведён анализ чувствительности коэффициентов модели, результаты которого соответствуют физическому поведению натриевых ламп высокого давления (НЛВД) и металлогалогенных ламп (МГЛ). Данная модель способна моделировать электрические характеристики ламп НЛВД и МГЛ широкого диапазона доступной номинальной мощности на светотехническом рынке (70–400 Вт), питаемых широким диапазоном питающего напряжения (180–250 В, 50 Гц). Практическая значимость модели заключается в её применении для разработки диммируемого низкочастотного электронного балласта прямоугольного импульса для ГЛВИ. Для этого в исследовании предложен алгоритм разработки. Анализ производительности разработанного балласта проведён в среде MATLAB/Simulink, результатами которого стали достаточно хорошие характеристики схемы с точки зрения точности диммирования (максимальное отклонение 2,64 %), коэффициент мощности лампы ≥0,993 и пиковый скачок тока 1,0. Модель также может быть использована для разработки электронных балластов других топологий.
Список использованной литературы
1. Coaton, J.R., Marsden, A.M. (Editors) // Lamps and Lighting. 3rd Edition, Wiley Publication, 1996, pp. 292–335.
2. Yan, W., Hui, S.Y.R. An improved high-intensity discharge lamp model including acoustic resonant effect on the lamp arc resistance // IEEE Trans. Power Electron., 2004. V19, #6, pp. 1661–1667.
3. Orletti, R., Co, M.A., Simonetti, D.S.L., Vieira, J.L.d.F. HID lamp electronic ballast with reduced component number // IEEE Trans. Ind. Electron., 2009. V56, #3, pp. 718–725.
4. Simpson, R.S. Lighting Control- Technology and Applications. 1st Edition, Focal Press, Italy, 2003, pp. 204–249.
5. Pan, Y., Huang, C., Lin, J., et al. Digital control of low-frequency, small-wattage, high-intensity discharge lamps // Lighting Res. & Technol., 2015. V48, #7, pp. 832–843.
6. Nsibi, W., Chammam, A., Nehdi, M.N., et al. HID lamps under low frequency square wave operation: Experimental Evaluation of Dimming effects // Lighting Res. & Technol., 2016. V49, #5, pp. 658–667.
7. Metal halide lamps: Instructions for the use and Application. https //www.osram.com/media/resource/hires/339014/metal-halidelamps-gb.pdf,2019, last accessed on February, 2020.
8. Alonso, J.M. ‘Electronic Ballasts’ in Rashid, M.H. (Editor) // Power Electronics Handbook. 4th Edition, Butterworth Heinemann, 2018, pp. 685–710.
9. Gupta Bakshi, B., Roy, B. Wattage-independent dynamic conductance model of compact fluorescent lamps: Validation and application in high-frequency operation // Lighting Res. & Technol., 2018. V50, #7, pp. 1107–1123.
10. Huang, C. M., Liang, T. J., Lin, R. L., Chen, J. F. A Novel Constant Power Control Circuit for HID Electronic Ballast // IEEE Trans. Power Electron., 2007. V22, #3, pp. 854–862.
11. Diaz, F. J., Azcondo, F. J., Branas, C., Casanueva, R., Zane, R. Digitally Controlled Low-Frequency Square-Wave Electronic Ballast with Resonant Ignition and Power Loop // IEEE Trans. Ind. Appl., 2010, 46, (6), pp. 2222–2232.
12. Gupta Bakshi, B., Roy. B. A design methodology for acoustic resonance-free, high-frequency, dimmable electronic ballast for high-pressure sodium-vapour lamps // Lighting Res. and Technol., 2020. V52, #4, pp. 524–539.
13. Lin, D., Yan, W., Hui, S.Y.R. Modelling the warm-up phase of the starting processes of high-intensity discharge lamps. // IET Sci., Meas. and Technol., 2011. V5, #6, pp. 199–205.
14. Lin, D., Yan, W., Zissis, G., Hui, S.Y.R. Methodology for developing a low-pressure discharge lamp model with electron density variation and ambipolar diffusion // IET Sci., Meas. & Technol., 2012. V6, #4, pp. 229–237.
15. Loo, K.H., Moss, G.J. et al. A dynamic collisional-radiative model of a low-pressure mercury-argon discharge lamp: a physical approach to modeling fluorescent lamps for circuit simulations // IEEE Trans. Power Electron., 2004. V19, #4, pp. 1117–1129.
16. Blanco, C., Antón, J.C., Robles, A. et al. A discharge lamp model based on lamp dynamic conductance // IEEE Trans. Power Electron., 2007. V22, #3, pp. 727–734.
17. Blanco, C., Antón, J.C., Robles, A. et al. Comparison between Different Discharge Lamp Models Based on Lamp Dynamic Conductance // IEEE Trans. Ind. Appl., 2011. V47, #4, pp. 1983–1991.
18. Francis, V.J. Fundamentals of Discharge Tube Circuits. 1st Edition, Methuen and Co. Ltd., London, 1948.
19. Soriano, C., Aubés, M., Damelincourt, J. J., Abdennadheri, T., Stambouli, M. and Annabi, M. Lampes et circuits: du modéle physique au circuit électrique. Applicatión à l’analyse de circuits électriques comportant des lampes á vapeur de mercure á haute pression // Revue Generale de l’Électricite, 1988. #7, pp. 8–19.
20. Zissis, G., Damelincourt, J.J., Bezanahary, T. Modelling discharge lamps for electronic circuit designers: A review of the existing methods. In Proc // IEEE-IAS Annual Conference, Chicago, Illinois, September-October 2001, pp. 1260–1262.
21. Antón, J.C., Blanco, C., Ferrero, F., Roldán, P., Zissis, G. An equivalent conductance model for high intensity discharge lamps // Conference Record of the 2002 IEEE Industry Applications Conference (37th IAS Annual Meeting), Pittsburgh, PA, October 2002, pp. 1494–1498.
22. Antón, J.C., Blanco, C., Ferrero, F., Roldán, P., Zissis G. Simulation of the dynamic behaviour of HID lamps based on electrical conductance. // In Proc. 28th Annual Conf. of the Ind. Electron. Society (IECON02), Sevilla, Spain, November 2002, pp. 462–467.
23. Gupta Bakshi, B., Dutta, A., Roy, B. Development and Validation of dynamic conductance based wattage independent model for magnetic ballast driven non-retrofit CFLs // Light and Engineering, 2016. V24, #2, pp. 65–76.
24. Gupta Bakshi, B., Roy, B. Development & simulation of dynamic conductance based high intensity discharge lamp model driven by low frequency square wave electronic ballast // In Proc. 2016 IEEE7th Power India International Conference (PIICON), Bikaner, India, November 2016, pp. 1–6.
25. Lister, G.G., Lawler, J.E., Lapatovich, W.P., Godyak, V.A. The physics of discharge lamps // Rev Modern Physics, 2004. V76, #2, pp. 541–598.
26. Laskowski, E.L. and Donoghue, J.F. A model of a mercury arc lamp’s terminal V–I behaviour // IEEE Trans. on Ind. Appl., 1981. VIA‑17, #4, pp. 419–426.
27. Nsibi, W., Chammam, A., Nehdi, M.N., Mrabet, B., Sellami, A., Zissis, G. HID lamps under low frequency square wave operation: Experimental evaluation of dimming effects // Lighting Res. and Technol., 2017. V49, #5, pp. 658–667.
28. Loo, K.H., Stone, D.A., Tozer, R.C., Devonshire, R. A Dynamic Conductance Model of Fluorescent Lamp for Electronic Ballast Design Simulation // IEEE Trans. Power Electron., 2005. V20, #5, pp. 1178–1185.
29. Meyer, C., Nienhuis, H. Discharge Lamps. 1st Edition, Philips Technical Library, 1988, pp. 13–282.
30. Surface Fitting Toolbox by MATLAB. https//in.mathworks.com/help/curvefit/surface-fitting.html, last accessed in February, 2020.
31. Waymouth, J.F. Electric Discharge Lamps. 1st Edition, The MIT Press, USA, 1971.
32. Koprnicky, J. Electric conductivity model of discharge lamp // PhD Thesis, Paul Sabatier University, France, 2008, pp. 27–120.
33. von Engel, A. Ionized Gases. 2nd Edition, Oxford University Press, UK, 1965, pp. 7–15.
34. Pan, Y., Lin, J., Su, S., Shih, T.M. A high-frequency half-bridge driving circuit topology for HID lamps // Lighting Res. & Technol., 2015. V48, #6, pp. 771–779.
35. Menke, M.F., Silva, M.F.d. et al. Comparative Analysis of Self-Oscillating Electronic Ballast Dimming Methods with Power Factor Correction for Fluorescent Lamps // IEEE Trans. Ind. Appl., 2015. V51, #1, pp. 770–782.
36. Mader, U., Horn, P. A dynamic model for the electrical characteristics of fluorescent lamps // In Proc. 1992 IEEE Ind. Appl. Society Annual Meeting, Houston (TX), October 1992, pp. 1928–1934.
37. Rashid, M.H. Power Electronics-Circuits, Devices and Applications. 3rd Edition, Prentice Hall, New Jersey, 2004, pp. 180–281.
38. Mohan, N., Undeland, T.M., Robbins, W.P. Power Electronics-Converters, Applications and Design. 2nd Edition, John Wiley & Sons, USA, 1995, pp. 161–199.
39. Bureau of Indian Standards. SP‑72: National Lighting Code‑2010. New Delhi, India, 2010, pp. 47–70
Ключевые слова
Выберите вариант доступа к этой статье

Купить

Рекомендуемые статьи
https://iedi.edu.br/wp-includes/slot-kamboja-bet-100/https://iedi.edu.br/wp-content/bandito/https://www.unjc.cu/starlight-princess/https://www.unjc.cu/demo-slot-zeus-vs-hades/https://cstvcnmt.gialai.gov.vn/demo/https://sedimentologia.org.ar/slot-depo-10k/https://conference.vestnik-vsuet.ru/https://bundamediagrup.co.id/wp-includes/mpo/https://bundamediagrup.co.id/wp-includes/sv388/http://himatikauny.org/wp-includes/akun-pro-platinum/https://procesolocal2024.ieebcs.org.mx/vendor/zeus-vs-hades-demo/http://himatikauny.org/wp-content/slot-kamboja-bet-100/https://procesolocal2024.ieebcs.org.mx/js/https://journal.dntb.gov.ua/slot-depo-10k/https://fjot.anfe.fr/js/https://blog.indoamerica.edu.ec/wp-includes/slot-kamboja-bet-100/https://investigacion.indoamerica.edu.ec/wp-content/wild-bandito/https://portalderevistas.uam.edu.ni/public/zeus-vs-hades/https://portalderevistas.uam.edu.ni/public/pasarantogel2/https://perhepi.org/fae/akun-pro-jepang/https://ejournal.aibpmjournals.com/gates-of-olympus/https://ucardioj.com.ua/classes/https://ois.unsa.ba/wild-bandito/https://journals.qmu.ac.uk/controllers/https://journals.qmu.ac.uk/classes/https://ucardioj.com.ua/slot-depo-10k/https://journals.qmu.ac.uk/sv388/https://journals.qmu.ac.uk/api/depo-10k/https://ois.unsa.ba/slot-deposit-pulsa/http://103.165.243.97/doc/git/https://www.chiesadellarte.org/https://www.rollingcarbon.org/https://www.savebugomaforest.org/https://www.sigmaslot-profil.com/https://www.doxycycline365.com/https://thailottonew.site/https://hipnose.in/https://tennishope.orghttps://serenityprime.net/https://revista.farol.edu.br/uploads/pt2/https://civitic.indoamerica.edu.ec/wp-includes/pasarantogel2/https://journals.uol.edu.pk/classes/pasarantogel2/http://snabm.unim.ac.id/api/http://snabm.unim.ac.id/classes/slot-luar-negeri/http://103.165.243.97/doc/unsign/akun-pro-platinum/http://103.165.243.97/doc/word/mposlot/https://352spb.edusite.ru/slot-depo-10k/https://bundamediagrup.co.id/depo10k/https://loa.tsipil-uii.ac.id/sg-gacor/http://snabm.unim.ac.id/depo-10k/http://snabm.unim.ac.id/lib/slot-maxwin/http://103.165.243.97/doc/luar-negeri/http://103.165.243.97/doc/sign/slot-thailand/http://103.165.243.97/doc/before_tte/zeus-slot/https://appv2.tanahlautkab.go.id/doc/mpo/https://www.chuka.ac.ke/gates-of-olympus-1000/http://103.165.243.97/doc/kamboja/http://mysimpeg.gowakab.go.id/mysimpeg/bangkomplit/http://mysimpeg.gowakab.go.id/toto/http://mysimpeg.gowakab.go.id/mysimpeg/maxwin/https://jurnal.jsa.ikippgriptk.ac.id/public/luar/https://www.unjc.cu/sweet-bonanza/http://103.165.243.97/doc/dana/https://fk.ulm.ac.id/wp-content/uploads/https://fk.ulm.ac.id/wp-content/fonts/https://ppid.cimahikota.go.id/infomugi/slot-luar-negeri/http://103.165.243.97/doc/cth/https://ppid.cimahikota.go.id/assets/maxwin-slot/https://ijatr.polban.ac.id/docs/https://loa.tsipil-uii.ac.id/data/thailand/https://loa.tsipil-uii.ac.id/scatter-hitam/https://ijatr.polban.ac.id/toto/https://simba.cilacapkab.go.id/idnslot/https://mpp.bandung.go.id/surat/idnslot/https://fk.ulm.ac.id/wp-content/thailand/https://rdsp.msp.gob.do/api/thailand/https://perijinan.blitarkota.go.id/assets/jp-gacor/https://revista.forumseguranca.org.br/https://perijinan.blitarkota.go.id/data/situs-toto/https://perijinan.blitarkota.go.id/data/depo-10k/https://mpp.bandung.go.id/git/demo/https://mpp.bandung.go.id/api/jp-gacor/https://simba.cilacapkab.go.id/assets/depo-10k/https://simba.cilacapkab.go.id/api/demo/https://simba.cilacapkab.go.id/api/https://bundamediagrup.co.id/wp-includes/idn/http://103.165.243.97/doc/maxwin-slot/http://103.165.243.97/doc/sv388/https://bundamediagrup.co.id/akun/demo/https://ijabr.polban.ac.id/-/pulsa/https://sipirus.sukabumikab.go.id/storage/uploads/jp-thailand/https://sipirus.sukabumikab.go.id/storage/uploads/-/sthai/https://sipirus.sukabumikab.go.id/storage/uploads/-/stoto/https://sipirus.sukabumikab.go.id/storage/uploads/server-kamboja/https://alwasilahlilhasanah.ac.id/starlight-princess-1000/https://www.remap.ugto.mx/pages/slot-luar-negeri-winrate-tertinggi/https://waper.serdangbedagaikab.go.id/public/images/qrcode/slot-dana/https://waper.serdangbedagaikab.go.id/public/images/qrcode/slot-deposit-pulsa/https://waper.serdangbedagaikab.go.id/storage/framework/http://103.165.243.97/doc/thailand/https://appv2.tanahlautkab.go.id/easy-win/https://bakesbangpol.katingankab.go.id/uploads/pulsa