Содержание
Аннотация
В данной работе рассматриваются вопросы изменения яркости адаптации при сумеречном зрении в условиях наружного освещения. Фотометрическая сумеречная система основана на работе зрительной системы наблюдателя применительно к периферийному зрению и яркости адаптации, необходимой для вычисления эффективной яркости сумеречного зрения для измеряемой области. В работе анализируется яркость адаптации при наличии окружающих источников с различной цветностью, чтобы оценить влияние холодного белого и тёплого белого света от них. Так эффективная яркость – это яркость, создаваемая основным и окружающими его источниками света. Доказано, что яркость эквивалентной вуали (для слепящей блескости) от окружающих источников увеличивает время адаптации наблюдателя, но не яркость в пределах измерительного поля. Также было замечено, что при наличии окружающих источников холодного белого света яркость адаптации значительно возрастает по сравнению с окружающими источниками тёплого белого света.
Список использованной литературы
1. Commission Internationale de l’Eclairage. Recommended System for Mesopic Photometry Based on Visual Performance. CIE Publication 191–2010, Vienna: CIE, 2010.
2. Uchida T., Ohno Y. Defining the visual adaptation field for mesopic photometry: Effect of surrounding source position on peripheral adaptation // Lighting Research and Technology, 2017. V49, pp. 763–773
3. Maksimainen M., Puolakka M., Tetri E., and Halonen L. Veiling luminance and visual adaptation field in mesopic photometry // Lighting Research and Technology, 2017, V49, pp. 743–762.
4. Freiding A., Eloholma M., Ketomaki J., Halonen L., Walkey H., Goodman T., Alferdinck J., Varady G., Bodrogi P. Mesopic visual efficiency I: Detection threshold measurements // Lighting Research and Technology, 2007. V39, pp. 319–334.
5. Walkey H., Orrevetela¨ inen P., Barbur J., Halonen L., Goodman T., Alferdinck J., FreidingA, Szalmas A. Mesopic visual efficiency II: Reaction time experiments // Lighting Research and Technology, 2007. V39, pp. 335–354.
6. Varady G, Freiding A., Eloholma M., Halonen L., Walkey H., Goodman T., Alferdinck J. Mesopic visual efficiency III: Discrimination threshold measurements // Lighting Research and Technology, 2007. V39, pp. 355–364.
7. Heynderickx I., Ciocoiu J., Zhu XY.. Estimating eye adaptation for typical luminance values in the field of view while driving in urban streets // Proceedings of CIE Centenary Conference, Paris, April 15–16, 2013. pp. 41–47.
8. Uchida T., Ayama M., Akashi Y., Hara N., Kitano T., Kodaira Y., Sakai K. Adaptation luminance simulation for CIE mesopic photometry system implementation // Lighting Research and Technology, 2016. V48, pp. 14–25.
9. Illuminating Engineering Society of North America, Spectral Effects of Lighting on Visual Performance at Mesopic Lighting Levels, IES TM‑12–12 (IESNA, New York, 2012)
10. Uchida T., Ohno Y. Simplified field measurement methods for CIE mesopicPhotometry System // Lighting Research and Technology, 2017. V49; pp. 774–787.
11. Cengiz C., Maksimainen M., Puolakka M., and Halonen L. Contrast threshold measurements of peripheral targets in night-time driving images // Lighting Research and Technology, 2016. V48, pp. 491–501.
12. Cengiz C., Kotkanen H., Puolakka M., Lappi O., Lehtonen E., Halonen L., Summala L. Combined eye-tracking and luminance measurements while driving on a rural road: Towards determining mesopic adaptation luminance // Lighting Research and Technology, 2014. V46, pp. 676–694.
13. Gibbons RB., Terry T., Bhagavathula R., J. Meyer, and Lewis A. Applicability of mesopic factors to the driving task // Lighting Research and Technology, 2016. V48, pp. 70–82.
14. Ikegami Y., Inoue Y., Hara N. Study on Evaluation Method of Visibility by Effective Luminance for Which Various Visual Factors is Considered, Proceedings of the 2013 CJK Lighting Conference. Gwangju, Korea, 23 August, 2013. Pp. 181–184.
15. Luo W., Puolakka M., Zhang Q., Yang C., Halonen L. Pedestrian way lighting: user preferences and eye-fixation measurements // Journal of Lighting Engineering, 2013. V15, #1, pp. 19–34.
16. Rea MS., Bullough JD., and Brons JA. Spectral considerations for outdoor lighting: Designing for perceived scene brightness // Lighting Research and Technology, 2015. V47, pp. 909–919.
17. Kostic AM., Kremic MM., Djokic LS., and Kostic MB. Light-emitting diodes in street and roadway lighting–a case study involving mesopic effects // Lighting Research and Technology, 2013. V45, pp. 217–229.
18. Sahana S. Performance Analysis of Light Emitting Diodes in Road lighting involving Mesopic effects, Proceedings of the International Conference Lux Pacifica, Kolkata, India, 2015.
19. Rea MS., Bullough JD., and Brons JA. Parking lot lighting based upon predictions of scene brightness and personal safety // Lighting Research and Technology, 2015. V0, pp. 1–12.
20. Sahana S., Paul A., Roy B. Adaptation luminance variation under lamps of different spectral compositions with variable surrounding luminance effects // Journal of Optics, 2019. V48, pp. 527–538.
21. Dubnièka R., Gašparovský D. Classification system for lighting design under condition of mesopic photometry. 2016 IEEE Lighting Conference of the Visegrad Countries.
22. Fotios SA., Cheal C. Predicting lamp spectrum effects at mesopic levels. Part 1: Spatial /brightness’ // Lighting Research and Technology, 2011. V43, pp. 143–157.
23. Kostic B., Djokic L.S. A modified CIE Mesopic table and the effectiveness of white light sources // Lighting Research and Technology, 2012. V44, pp. 416–426.
24. Puolakka M., Halonen L. Implementation of CIE191 Mesopic Photometry – Ongoing and Future Actions, Proceedings of the CIE, Hangzhou, Vienna, Austria: Commission Internationale de l’E´ clairage, 2012.
25. Shpak M., Karha P., and Ikonen E. Mathematical limitations of the CIE mesopic photometry system // Lighting Research and Technology, 2015. V0, pp. 1–11.
26. Fry GA. A re-evaluation of the scatter theory of glare // Journal of the Illuminating Engineering Society, 1954. V49, pp. 98–102.
27. Commission Internationale de l’Eclairage. CIE Publication146: 2002. CIE Equations for Disability Glare. Vienna: CIE, 2002.
28. Uchida T., Ohno Y. Angular characteristics of the surrounding luminance effect on peripheral adaptation state in the mesopic range // Proceedings of CIE2014 Lighting Quality and Energy Efficiency, Kuala Lumpur, Malaysia, April 23–26, 2014. pp. 273–280.
29. Kuhn L., Johanssona M., Laikea T., and Goven T. Residents’ perceptions following retrofitting of residential area outdoor lighting with LEDs // Lighting Research and Technology, 2013. V45, pp. 568–584.
30. Uchida T., Ohno Y. Defining the visual adaptation field for mesopic photometry: How does a high-luminance source affect peripheral adaptation? // Lighting Research and Technology, 2015. V47, pp. 845–858.
31. Uchida T., Ohno Y. Defining the visual adaptation field for mesopic photometry: Does surrounding luminance affect peripheral adaptation? // Lighting Research and Technology, 2014. V46, pp. 520–533.
32. Das S., Sahana S., Roy B. Experimental Assessment of WLED Lamp Performance for Area Lighting Application under Mesopic Photometry System, ICEECC2019, India
33. Commission Internationale de l’Eclairage. Lighting of Roads for Motor and Pedestrian Traffic, CIE Publication 115:2010. Vienna: CIE, 2010.
34. European Metrology Research Programme. Report on Quality Metrics Related to Mesopic Measurements of SSL, EMRP-ENG‑05–4.3.4. Teddington, UK: EMRP, 2013.
Ключевые слова
Выберите вариант доступа к этой статье
Рекомендуемые статьи
Обобщённая модель динамической проводимости для газоразрядных ламп высокой интенсивности и её перспективное применение для разработки диммируемого электронного балласта «СВЕТОТЕХНИКА», 2021, №2
Разработка и практическая реализация установки внутреннего освещения с возможностью передачи данных видимым светом. Журнал «Светотехника» №1 (2020)
Независимая от мощности модель КЛЛ с выносным электромагнитным ПРА, основанная на динамической проводимости. Журнал «Светотехника» №4 (2016)