Содержание
Иллюстрации - 7
Таблицы и схемы - 1
Влияние спектральной настройки белого света на уровень внимания и качество сна «СВЕТОТЕХНИКА», 2021, № 3

Журнал «Светотехника» №3

Дата публикации 24/06/2021
Страница 52-57

Купить PDF - ₽450

Влияние спектральной настройки белого света на уровень внимания и качество сна «СВЕТОТЕХНИКА», 2021, № 3
Авторы статьи:
Дандан Хоу (Dandan Hou), Яндан Лин (Yandan Lin), Янь Лу (Yan Lu), Мин Ронье Ло (Ming Ronnier Luo)

Дандан Хоу (Dandan Hou) аспирант на кафедре источников света и осветительной техники Университета Фудань в Шанхае, Китай. Её научные интересы включают человеческий фактор в освещении, цветовое зрение и человекориентированное освещение

Яндан Лин (Yandan Lin), Ph.D. В настоящее время она является профессором кафедры источников света и светотехники Университета Фудань. Её научные интересы включают медицинское освещение и цветоведение. Она участвовала в более чем 30 проектах, включая Национальный фонд естественных наук Китая, Специальный проект для китайских коммерческих самолётов. Она опубликовала более 100 научных статей

Янь Лу (Yan Lu), аспирант в Школе дизайна Университета Лидса, Лидс, Великобритания. Её научные интересы включают человеческий фактор в освещении и тоне кожи

Мин Ронье Ло (Ming Ronnier Luo) – профессор кафедры Циуши в Колледже оптических наук и инженерных технологий Чжэцзянского университета (Китай). Он также является приглашённым профессором Университета Лидса (Великобритания) и Национального Тайваньского университета науки и техники в Китайском Тайбэе. Он является членом Общества науки и техники визуализации (Imaging Science and Technology) и Общества художников и колористов (Society of Dyers and Colourists)

Аннотация
Функциональное или основное освещение, целью которого является создание комфортной видимости в первую очередь, но не светового образа объекта (декоративное освещение), в том числе определяет циркадное влияние света на самочувствие человека. В настоящем исследовании проводился психофизический эксперимент в два сеанса (утром и днём) в течение 60 дней. Эксперимент был разработан для изучения влияния различных условий циркадного освещения на уровень внимания, мозговую активность и качество сна. Основные зависимости исследовались с помощью регулировки спектрального состава излучения при контролируемой коррелированной цветовой температурой (КЦТ) и значении освещённости. Во время эксперимента наблюдателями выполнялась задачи PVSAT, снималась электроэнцефалограмма (ЭЭГ) и заполнялся опросник PSQI. В эксперименте участвовало 20 наблюдателей. Результаты показали, что белое освещение с высоким уровнем циркадных стимулов и высоким уровнем меланопического облучения значительно повышает уровень внимания, мозговую активность и качество сна по сравнению с низким уровнем циркадных стимулов.
Список использованной литературы
1. Berson D.M., Dunn F.A., and Takao M. Phototransduction by retinal ganglion cells that set the circadian clock // Science. 2002, Vol. 295, #5557, pp. 1070–1073.
2. Hattar S. Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity // Science. 2002, Vol. 295, #5557, pp. 1065–1070.
3. Revell V. L. and et al. Predicting human nocturnal nonvisual responses to monochromatic and polychromatic light with a melanopsin photosensitivity function // Chronobiology International. 2010, Vol. 27, #(9–10), pp. 1762–1777.
4. Sletten T.L. and et al. Randomised controlled trial of the efficacy of a blue-enriched light intervention to improve alertness and performance in night shift workers // Occupational and Environmental Medicine. 2017, Vol. 74, #11, pp. 792–801.
5. Torbj Rn. K. and et al. Night work and breast cancer in women: a Swedish cohort study // Bmj Open. 2015, Vol. 5, #4, pp. e008127.
6. Parveen B. and et al. Nightshift work and risk of ovarian cancer // Occupational & Environmental Medicine. 2013, Vol. 70, #4, pp. 231–237.
7. Viola A.U. and et al. Blue-enriched white light in the workplace improves self-reported alertness, performance and sleep quality // Scandinavian Journal of Work, Environment & Health. 2008, Vol. 34, #4, pp. 297–306.
8. Sahin L. and Figueiro M.G. Alerting effects of short-wavelength (blue) and long-wavelength (red) lights in the afternoon // Physiology & Behavior. 2013, Vol. 116, pp. 1–7.
9. Illumination, I.C.o., CIE S026:2018 CIE System for Metrology of Optical Radiation for ipRGC–Influenced Responses to Light, 2020.
10. Rea M.S. and et al. Modelling the spectral sensitivity of the human circadian system // Lighting Research & Technology. 2012, Vol. 44, #4, pp. 386–396.
11. Rea M.S. and Figueiro M.G. Light as a circadian stimulus for architectural lighting // Lighting Research & Technology. 2018, Vol. 50, #4, pp. 497–510.
12. Rea M.S. and et al. A model of phototransduction by the human circadian system // Brain Research Reviews. 2005, Vol. 50, #2, pp. 213–228.
13. Sloane P.D. and et al. Effect of homebased light treatmenton persons with dementia and their caregivers // Lighting Research & Technology. 2015, Vol. 47, #2, pp. 161–176.
14. Young C.R. and et al. At-Sea Trial of 24-h-Based Submarine Watchstanding Schedules with High and Low Correlated Color Temperature Light Sources // Journal of Biological Rhythms. 2015, Vol. 30, #2, pp. 144–154.
15. Ye M. and et al. The effect of dynamic correlated colour temperature changes on alertness and performance // Lighting Research & Technology. 2018, Vol. 50, #7, pp. 1070–1081.
16. Figueiro M.G. and et al. Circadian-effective light and its impact on alertness in office workers // Lighting Research & Technology. 2019, Vol. 51, #2, pp. 171–183.
17. Zheng S.Q. The effect of light on human alertness, performance and circadian rhythem. 2018, Zhejiang University.
18. Souman J.L. and et al., Spectral Tuning of White Light Allows for Strong Reduction in Melatonin Suppression without Changing Illumination Level or Color Temperature // Journal of Biological Rhythms. 2018, Vol. 33, #4, pp. 420–431.
19. Rebec K.M. and Gunde M.K.E. High-performance lighting evaluated by photobiological parameters // Applied Optics. 2014, Vol. 53, #23, pp. 5147–53.
20. Žukauskas A., Vaicekauskas R., and Vitta P.K. Optimization of solid-state lamps for photobiologically friendly mesopic lighting // Applied Optics. 2012, Vol. 51, #35, pp. 8423–32.
21. Dai Q. and et al., Circadian-effect engineering of solid-state lighting spectra for beneficial and tunable lighting // Optics Express. 2016, Vol. 24, #18, pp. 20049–20058.
22. Aladov A.V. and et al. Concerning biological equivalent of radiation of light-emitting diode and lamp light sources with correlated colour temperature from 1800 k up to 10000 k // Light & Engineering. 2012, Vol. 20, #3, pp. 9–14.
23. Horne J.A. and Ostberg Ö. A Self Assessment Questionnaire to Determine Morningness Eveningness in Human Circadian Rhythms // Int J Chronobiol. 1976, Vol. 4, #2, pp. 97–110.
24. Figueiro M.G. and Rea M.S. Lack of short-wavelength light during the school day delays dim light melatonin onset (DLMO) in middle school students // Neuroendocrinology Letters. 2010, Vol. 31, #1, pp. 92–96.
25. Figueiro M.G. and et al. The impact of daytime light exposures on sleep and mood in office workers // Sleep Health. 2017, Vol. 3, #3, pp. 204–215.
26. Wang Y. and et al., A model for evaluating visual fatigue under LED light sources based on long-term visual display terminal work // Lighting Research & Technology. 2018, Vol. 50, #5, pp. 729–738.
27. Figueiro M.G. and et al., Light at Night and Measures of Alertness and Performance: Implications for Shift Workers // Biological Research for Nursing. 2016, Vol. 18, #1, pp. 90–100.
28. Cajochen C. and et al., Evening administration of melatonin and bright light: interactions on the EEG during sleep and wakefulness // Journal of Sleep Research. 2010, Vol. 7, #3, pp. 145–157.
29. Buysse D.J. and et al., The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research // Psychiatry Research, 1989.
30. Chellappa, S.L. and et al., Non-Visual Effects of Light on Melatonin, Alertness and Cognitive Performance: Can Blue-Enriched Light Keep Us Alert // Plos One. 2011, Vol. 6, #1, pp. 11.
31. Motamedzadeh M. and et al., The effect effect of blue-enriched white light on cognitive performances and sleepiness of night-shift workers: A field study // Physiology & Behavior. 2017, Vol. 177, pp. 208–214.
32. Gevins A., et al. High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice // Cerebral Cortex. 1997, Vol. 7, #4, pp. 374–385.
33. Gundel A. and Wilson G.F. Topographical changes in the ongoing EEG related to the difficulty of mental tasks // Brain Topography. 1992, Vol. 5, #1, pp. 17–25.
34. Mccallum W.C., Cooper R., and Pocock P.V. Brain slow potential and ERP changes associated with operator load in a visual tracking task // Electroencephalography & Clinical Neurophysiology. 1988, Vol. 69, #5, pp. 453–468.
35. Cajochen C., et al., Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness // Behavioural Brain Research. 2000, Vol. 115, #1, pp. 75–83.
36. Cluitmans et al., Higher light intensity induces modulations in brain activity even during regular daytime working hours // Lighting Research & Technology, 2016.
Ключевые слова
Выберите вариант доступа к этой статье

Купить

Рекомендуемые статьи