Content
Abstract:
The Sah-Noyce-Shockley (SNS) space charge region recombination theory is applied to build the mathematic model of the voltage-current relationships (VCR) of light emitting diodes with quantum wells. Unlike the mathematic model of VCR, for SNS in the proposed model, non-uniformity of recombination centres distribution over the space charge region and dependence of their mean concentration on voltage are assumed as well as the fact that the nonideality factor of forward current dependence on bias voltage may have a continuous series of values from 1 to 5 and is defined by the dependence on bias voltage of both saturation current and exponent of the VCR mathematical model.
References:
1. Shockley W. The Theory of p – n Junctions in Semiconductors and p – n Junction Transistors // Belt Syst. Tec. J. 1949, Vol. 28, pp. 435–489. 2. Sah C. T., Noyce R.N., Shockley W. Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics // Proc. IRE. 1957, Vol. 45, pp. 1228–1243. 3. Choo, S.C. Carrier generation-recombination in the space-charge region of an assymmetrical p-n junction // Solid State Electron. 1968, Vol. 11, pp. 1069–1077. 4. Sze S.M. Physics of Semiconductor Devices. Translated from English into Russian under the editorship of R.A. Suris. In 2 books. Book 1, 2nd edition, revised and supplemented. Moscow, Mir, 1984, 456 p. 5. Nakamura S., Iwasa M.S. Method of manufacturing p-tipe compound semicondoctors/ Patent N5, 306,662. Apr.1994. Japan. 6. Amano H., Akasaki I. et.al. Method for producing a luminous element of III-group nitride / Patent N5, 496,766. Mar. 1996. Japan. 7. Kong H-S., Leonard M., Bulman G., Negley G., Edmond J. AlGaN/GaN/AlGaN double-heterojunction blue LEDs on 6H-SiC substrates// Mat. Res. Soc. Proc. 1996, Vol. 395, pp. 903–907. 8. Nakamura, S. InGaN light-emitting diodes with quantum-well structures // Mat. Res. Soc. Pros. 1996, Vol. 395, pp. 979–887. 9. Kudryashov V.E., Turkin A.N., Yunovich A.E., Kovalyov A.N., Manyakhin F.I. Electroluminescence Properties of InGaN/AlGaN/GaN Light Emitting Diodes With Multiple Quantum Wells [Lyuminestsentnyye i elektricheskiye svoystva svetodiodov InGaN/AlGaN/GaN s mnozhestvennymi kvantovymi yamami] // FTP. 1999, Vol. 33, issue 4, pp. 445–450. 10. Yunovich A.E., Kudryashov V.E., Turkin A.N., Kovalev A.N., Manyakhin F.I.. Electroluminescence Properties of InGaN/AlGaN/GaN Light Emitting Diodes with Multiple Quantum Wells // MRS Intern. J. Nitride Semicond. Res. 1999, 4S1, G6, p. 29. 11. Yunovich, A.E., Kudryashov, V.E., Mamakin, S.S., Turkin, A.N., Kovalev, A.N., Manyakhin, F.I. Spectra and quantum efficiency of light emitting diodes based on GaN-heterostructures with quantum wells // Physica Status Solidi (A). 1999, Vol. 176, No. 1, pp. 125–130. 12. Manyakhin, F.I. Kovalev, A.N., Kudryashov, V.E., Mamakin, S.S., Yunovich, A.E. Change of charge centers distribution in AlGaN/InGaN/GaN heterostructures with multiple quantum wells during LED’s aging at high currents” // The Fourth European GaN Workshop. Nottingham, Abstract, 2000, 2D. 13. Bochkaryova N.I., Rebane Yu.T. Shreter Yu.G. Growth of Shockley-Reed-Hall Recombination Rate in InGaN/GaN Quantum Wells as the Major Mechanism of Loss of LED Efficiency at High Injection Levels [Rost skorosti rekombinatsii Shokli-Rida-Holla v kvantovykh yamakh InGaN/GaN kak osnovnoy mekhanizm padeniya effektivnosti svetodiodov pri vysokikh urovnyakh inzhektsii] // FTP, 2015, Vol. 49, issue 12, pp. 1714–1719. 14. Risovanyy V.D., Svetukhin V.V., Vostretsov D. Ya., Vostretsova L.N., Ambrozevich A.S., Ermakov M.S. The Effect of Continuous Flow of Forward Current on Electric Characteristics of InGaN-Based LEDs [Vliyaniye dlitelnogo protekaniya pryamogo toka na elektricheskiye kharakteristiki svetodiodov na osnove In-GaN] // Successes of Applied Physics [Uspekhi prikladnoy fiziki]. 2013, Vol. 1, issue 1, pp. 92–96. 15. Pikus G.E. Basics of the Theory of Semiconductor Devices [Osnovy teorii poluprovodnikovykh priborov]. Moscow: Nauka, GRFML, 1965, 448 p. 16. Zang M., Bhattacharya P., Singh J., Hinckley J. Direct measurement of auger recombination in In0.1Ga0.9N/GaN quantum well and its impact on the efficiency in In0.1Ga0.9N/GaN multiply quantum well light emitting diodes // Applied Physics Letters. 2009, Vol. 95, No. 20, pp. 1108. 17. Hopkins M.A., Allsopp, D.W.E., Kappers, M.J. Oliver, R.A., Humpreys, C.J.. The ABC model of recombination reinterpreted: Impact on understanding carrier transport and efficiency droop in InGaN/GaN light emitting diodes // J. Appl. Phys. 2017, Vol. 122, No. 23, p. 4505. 18. David A., Hurni C.A., Young N.G., Craven M.D. Electrical properties of III-nitride LEDs recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling // Appl. Phys. Lett. 2016. Vol. 109, No. 8, pp. 3501. 19. Dai Q., Shan Q., Wang J., Chhajed S., Cho J.M., Shubert E.F., Crauford M.H., Koleske D.D., Kim M.-H., Park Y.. Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes // Appl Phys. Lett. 2010, Vol. 97, No. 13, pp. 3507. 20. Masui H., Nakamura S., DenBaars S.P. Tecnique to evaluate the diode ideality factor of light-emitting diodes // Appl. Phys. Lett. 2010, Vol. 96, No. 7, pp. 3509. 21. Masui H. Diode ideality factor in modern lightemitting diodes // Semicond. Sci. Technol. 2011, Vol. 26, No. 7, pp. 5011–5016. 22. Prudaev I.A., Skakunov M.S., Lelekov M.A., Ryaboshtan Yu.L., Gorlachuk P.V., Marmalyuk A.A. RecombinantCurrents in LEDs Based on Multiple Quantum Wells (AlxGa1-x)0.5In0.5P/(AlyGa1-y)0.5In0.5P [Rekombinatsyonnyye toki v svetodiodakh na osnove mnozhestvennykh kvantovykh yam (AlxGa1-x)0.5In0.5P/(AlyGa1-y)0.5In0.5P] // Izvestiya vuzov. Fizika. 2013, Vol. 56, issue 8, pp. 44–47. 23. Torchinskaya T.V., Karabaev A.G., Sheynkman M.K. Injection-Stimulated Transformation of Luminescence Spectra of Green GaP: N LEDs [Inzhektsionno-stimulirovannaya transformatsiya spektrov lyuminestsentsii zelyonykh GaP: N-svetodiodov] // FTP. 1990, Vol. 24, issue 8, pp. 1337–1348. 24. Abdullaev Zh.S., Gusev M. Yu., Zyuganov A.N., Torchinskaya T.V. Parameters of Deep Centres in AlGaAs LEDs Evaluated by Capacity and Injection Spectroscopy Methods [Parametry glubokikh tsentrov v svetodiodakh AlGaAs otsenyonnyye metodami emkostnoy i inzhektsionnoy spektroskopii] // Ukr. Phys. Journal. 1989. Vol. 34, issue 8, pp. 1220–1224. 25. Manyakhin F.I. Mechanism and Pattern of Lowering of Luminous Flux of LEDs Based on AlGaN/In-GaN/GaN Structures with Quantum Wells with Continuous Flow of Forward Current of Different Density [Mekhanizm i zakonomernost snizheniya svetovogo potoka svetodiodov na osnove struktur AlGaN/InGaN/GaN s kvantovymi yamami pri dlitelnom protekanii pryamogo toka razlichnoy plotnosti] // FTP. 2018. Vol. 52, issue 3, pp. 378–384. 26. Manyakhin F.I. The Role of the Compensated Layer in Formation of the Voltage-Current Relationship of LEDs Based on Wide Bandgap Semiconductors [Rol kompensirovannogo sloya v formirovanii volt-ampernoy kharakteristiki svetodiodov na osnove shirokozonnykh poluprovodnikov] // Izvestiya vuzov. Materialy elektronnoy tekhniki. 2009, Vol. 3, pp. 51–56. 27. Goryunov N.N., Manyakhin F.I., Klebanov M.P., Lukashev N.V. Impulse Three-Frequency Method of Measurement of Charged Centre Parameters in the Space Charge Region of Semiconductor Structures [Impulsnyy tryokhchastotnyy metod izmereniya parametrov zaryazhennykh tsentrov v oblasti prostranstvennogo zaryada poluprovodnikovykh struktur] // Pribory i sistemy upravleniya. 1999, Vol. 10, pp. 46–49. 28. Manyakhin F.I. The Nature of Resistance of the Compansated Layer and Recombination Mechanisms in LED Structures [Priroda soprotivleniya kompensirovannogo sloya i mekhanizmy rekombinatsii v svetodiodnykh strukturakh] // Izvestiya vuzov. Materialy elektronnoy tekhniki. 2006, Vol. 4, pp. 20–25. 29. NSM Archive. Physical Properties of Semiconductors. URL: http://www.ioffe.rssi.ru/SVA/NSM/Semicond/(accessed on: 28.02.2020).
Keywords
- light emitting diodes with quantum wells
- voltage-current relationship
- nonideality factor
- recombination mechanism
Recommended articles
The Interrelation between Temperature and Power Supply Modes of Low Power High Efficiency Light Emitting Diodes L&E, Vol.31, No.3, 2023
Physical–Mathematical Model Of The Internal Quantum Efficiency Dependence On The Current Of Leds With Quantum Wells Light & Engineering Vol. 28, No. 6
The Regularity of the Decrease in the Quantum Yield of Quantum-Wells LEDs at the Long-Term Current Flow from the ABC Model Position L&E, Vol. 29, No. 5 (2), 2021