Содержание
Иллюстрации - 13
Таблицы и схемы - 4
Независимая от мощности модель КЛЛ с выносным электромагнитным ПРА, основанная на динамической проводимости. Журнал «Светотехника» №4 (2016)

Журнал «Светотехника» №4

Дата публикации 20/08/2016
Страница 59-67

PDF

Независимая от мощности модель КЛЛ с выносным электромагнитным ПРА, основанная на динамической проводимости. Журнал «Светотехника» №4 (2016)
Авторы статьи:
Гупта Бакши Бисвадип (Gupta Bakshi Biswadeep), Апараджита Дутта (Aparajita Dutta), Бисванат Рой (Biswanath Roy)

Гупта Бакши Бисвадип (Gupta Bakshi Biswadeep), Ph. D., доцент кафедры электротехники в Технологическом институте Нарула, Калькутта, Индия. Область его научных интересов: математическое моделирование газоразрядных ламп и светодиодов, технология светодиодных драйверов, вопросы качества электроэнергии в освещении и приложения машинного обучения

Апараджита Дутта (Aparajita Dutta). Окончила в 2012 г. Индийский технический университет и в 2014 г. – аспирантуру Джадавпурского университета. Проектировщик освещения в компании AWA Lighting Designers

Бисванат Рой (Biswanath Roy), Ph. D., преподаватель кафедры светотехники факультета электротехники Джадавпурского университета (ГТУ) с 2000 года, пожизненный член Индийского общества инженеров по освещению (Indian Society of Lighting Engineers, ISLE), пожизненный член Института инженеров Индии (The Institution of Engineers India, IEI)

Аннотация
В статье представлена независимая от мощности математическая модель компактных люминесцентных ламп (КЛЛ), работающих с внешним электромагнитным пускорегулирующим аппаратом (ЭмПРА) на частоте 50 Гц. Эта модель, сформированная в «Matlab-Simulink», воспроизводит изменение электрических характеристик системы КЛЛ-ЭмПРА во времени и представляет собой модифицированный вариант существующей модели динамической электрической проводимости, в которой скорость изменения носителей заряда внутри разрядной трубки определяется на основе рассмотрения физических процессов, таких как ионизация, рекомбинация и диффузия на стенки. В качестве входного параметра модели выступает напряжение сети. В исходной, привязанной к конкретной мощности лампы, модели для описания этих физических процессов используются четыре коэффициента (A, B, C и D). При этом в модели не учитываются электрические параметры ЭмПРА, который заменён на источник синусоидального тока. В предлагаемой независимой от мощности модифицированной модели, применимой к лампам мощностью 7–18 Вт, учитывается влияние ЭмПРА. Полученные с помощью этой модели результаты сравниваются с результатами испытаний лампы мощностью 9 Вт, проведённых в широком диапазоне изменения напряжения сети (200–260 В). Результаты расчётов демонстрируют хорошее совпадение с характеристиками реальной системы лампа-ПРА, так что разработанную модель можно использовать при конструировании ПРА.
Список использованной литературы
1. Griffiths, A. 21st Century Lighting Design / 1st Ed. – Bloomsbury Publication, UK, 2014.– P. 160–200.
2. Blanco, C., Antón, J.C., Robles, A., et al. A discharge lamp model based on lamp dynamic conductance / IEEE Trans. Power Electron.– 2007. – Vol. 22, No. 3. – P. 727–734.
3. Yan, W., Hui, S.Y.R., Chung, H., Cao, X. H. Genetic algorithm optimized high-intensity- discharge lamp model// IEE Electronic Letters.– 2002. – Vol. 38, No. 3. – P. 110–112.
4. Laskowski, E.L., Donoghue, J.F. A Model of Mercury Arc Lamp’s Terminal V–I behavior// IEEE Trans. on Industry Applications.– 1981. – Vol. IA‑17, No. 4. – P. 419–426.
5. Yan, W., Hui, S.Y.R. A universal PSpice model for HID lamps// IEEE Trans. Ind. Appl.– 2005 – Vol. 41. – P. 1594–1602.
6. Yan, W., Hui, S.Y.R., Chung, H. Nonlinear high-intensity discharge lamp model including a dynamic electrode voltage drop// IEE Proc. Sci. Meas. Technol.– 2003. – Vol. 130, No. 4. – P. 161–167.
7. Lin, D., Yan, W., Hui, S.Y.R. Modelling the warm-up phase of the starting processes of high-intensity discharge lamps// IET Sci. Meas. Technol.– 2011. – Vol. 5, No. 6. – P. 199– 205.
8. Lin, D., Yan, W., Hui, S.Y.R. Modeling of Dimmable Fluorescent Lamp Including the Tube Temperature Effects// IEEE Trans. on Ind. Electronics.– 2011. – Vol. 58, No. 9. – P. 4145–4152.
9. Yan, W., Tam, E., Hui, S.Y.R. A Semi-Theoretical Fluorescent Lamp Model for Time-Domain Transient and Steady-State Simulations// IEEE Trans. on Power Electronics.– 2007. – Vol. 22, No. 6. – P. 2106–2115.
10. Zissis, G., Damelincourt, J.J., Bezanahary, T. Modelling discharge lamps for electronic circuit designers: A review of the existing methods// IEEE Proceedings of the Industrial Application Society, 2001, P. 1260–1262.
11. Francis, V. J. Fundamentals of Discharge Tube Circuits. London: Methuen and Co. LTD, 1948. – P. 39–48.
12. Koprnický, J. Electric Conductivity Model Of Discharge Lamps –Self Report of PhD Thesis// Technical University of Liberec and University Paul Sabatier Toulouse, Laboratory of Plasma and Energy Conversion, 2007. – P. 21–22.
13. Antón, J. C., Blanco, C., Ferrero, F., Roldán, P., Zissis, G. An equivalent conductance model for high intensity discharge lamps / Proc. IEEE IAS Conf., 2002. – P. 1494–1498.
14. Antón, J. C., Blanco, C., Ferrero, F., Roldán, P., Zissis, G. Simulation of the dynamic behavior of HID lamps based on electrical conductance// in Proc. IEEE IECON, 2002. – P. 462–467.
15. Loo, K.H. et al. A Dynamic Collisional- Radiative Model of A Low-Pressure Mercury– Argon Discharge Lamp: A Physical Approach to Modeling Fluorescent Lamps for Circuit Simulations// IEEE Trans. on Power Electronics.– 2004. – Vol. 19, No. 4. – P. 1117–1129.
16. Loo, K.H. et al. A Dynamic Conductance Model of Fluorescent Lamp for Electronic Ballast Design Simulation// IEEE Trans. on Power Electronics.– 2005. – Vol. 20, No. 5. – P. 1178–1185.
17. Holloway, A.J. et al. A Physically Based Fluorescent Lamp Model for a SPICE or a Simulink Environment// IEEE Trans. on Power Electronics.– 2009. – Vol. 24, No. 9. – P. 2101– 2110.
18. Blanco, C., Antón, J.C., Robles, A., et al. Comparison between Different Discharge Lamp Models Based on Lamp Dynamic Conductance// IEEE Trans. Industry Applications.– 2011. – Vol. 47, No. 4.– P. 1983–1991.
Ключевые слова
Рекомендуемые статьи