Содержание
Иллюстрации - 12
Таблицы и схемы - 4
Гидродинамическое исследование видов теплопереноса в противотуманной автофаре. Журнал «Светотехника» №3 (2016)

Журнал «Светотехника» №3

Дата публикации 20/06/2016
Страница 22-29

PDF

Гидродинамическое исследование видов теплопереноса в противотуманной автофаре. Журнал «Светотехника» №3 (2016)
Авторы статьи:
Салих Дзошкун (Salih Coskun), К. Фуркан Сёкмэн (K. Furkan Sokmen), Нуреттин Яманкарадениз (Nurettin Yamankaradeniz)

Салих Дзошкун (Salih Coskun). Окончил Улудагский университет. Доцент Технического лицея Улудагского университета. Область научных интересов: теплопередача и термодинамика

К. Фуркан Сёкмэн (K. Furkan Sokmen), Ph.D. Окончил Улудагский университет. Доцент Техничекого университета Бурсы. Область научных интересов: вычислительная гидродинамика, теплопередача и термодинамика

Нуреттин Яманкарадениз (Nurettin Yamankaradeniz). Окончил Улудагский университет. Сотрудник Технического лицея Улудагского университета. Область научных интересов: системы отопления, вентиляции и кондиционирования воздуха, термодинамика

Аннотация
Проведено расчётное исследование температурного распределения и теплопереноса (ТП) в противотуманной автомобильной фаре и получено решение, не зависящее от размеров сетки. Полученные результаты сопоставлены с литературными данными и подтверждены экспериментально. Измерения проводились при 24 °С в пяти точках с помощью термопар. Продолжительность испытаний составляла 2 ч. Для термического анализа использовалась программа «ANSYS CFX 12.1». Воздушный поток внутри противотуманной фары считался установившимся, несжимаемым, ламинарным и трёхмерным. Учитывались изменения теплофизических характеристик, гидростатический эффект и излучение. Излучение ‒ важный вид теплопереноса, который следует учитывать при расчёте распределения температуры линз автомобильных осветительных приборов. При неправильном выборе материалов излучение может оказывать негативное воздействие на линзы. Несмотря на сложность геометрии лампы и неизотермичность её поверхности, общие гидродинамические и теплофизические параметры от этого не зависят.
Список использованной литературы
1. Derlofske, J.V., Bullough. JD., Gribbin, C. Comfort and visibility characteristics of spectrally tuned high intensity discharge forward lighting systems//European Journal of Scientific Research.– 2007. – Vol. 17, No. 1. – P. 73–84.
2. Khanh, T. Q. Lighting Quality for Automotive Lighting Quality // Light & Engineering.– 2014. – Vol. 22, No. 4. – P. 59–63: Кхан, Т. К. Качество освещения, создаваемого автомобилями // Cветотехника.– 2014.– № 6. – С. 10–13.
3. Honeywill, T. Simulation sees. Automotive Engineer (–) (December).2007. 32–33.
4. Bauer, H. Automotive Electric/Electronic Systems Lighting Technology. Editor- in-Chief: Horst Bauer. – Stuttgart: Bosch GmbH, 1999.
5. Wulf, J., Reich, A. Temperature loads in headlamps / SAE World Congress and Exhibition, Detroit, 2002. doi:10.4271/2002–01–0912.
6. Sivak, M., Schoettle, B., Flannagan, M. J. Mercury-free HID lamps: glare and colour rendering // Lighting Research and Technology.– 2006. – Vol. 38, No. 1. – P. 33–40.
7. Jang, S., Shin, W. S. Thermal analysis of LED arrays for automotive head lamp with a novel cooling system// IEEE Transactions on Device and Materials Reliability.– 2008. – Vol. 8, No. 3. – P. 561–564.
8. Fischer, P. Radiative Heat Redistribution and Natural Convection Flow inside an Automotive Fog Lamp / ISAL 2005 Symp., Germany, Darmstadt, 2005.
9. Sokmen, K.F., Pulat, E., Yamankaradeniz, N., Coskun, S. Thermal Computations of Temperature Distribution and Bulb Heat Transfer in an Automobile Headlamp / Int. Comminication Heat and Mass Transfer, 2012. DOI: 10.1007/s00231–013–1229–5 to be published in: Heat and Mass Transfer.
10. Wulf, J. Calculation of temperature loads in headlamps / SAE Int. Congress and Exposition, Detroit, 1998. P.: 980315 doi:10.4271/980315.
11. Kuehn, T.H., Goldstein, R. J. Numerical solution to the Navier-Stokes equations for laminar natural convection about a horizontal isothermal circular cylinder// Int. Journal of Heat and Mass Transfer.– 1980. – Vol. 23, No. 7. – P. 971–979.
12. Clemes, S.B., Hollands, K.G.T., Brunger, A. P. Natural convection heat transfer from long horizontal isothermal cylinders// ASME Journal of Heat Transfer.– 1994. – Vol. 116, No. 1. – P. 96–105.
13. Roychowdhury, D.G., Das, S.K., Sundararajan, T. Numerical simulation of natural convective heat transfer and fluid flowaround a heated cylinder inside an enclosure// Heat and Mass Transfer.– 2002. – Vol. 38, No. 7–8. – P. 565–576.
14. Ambrosini, D., Paoletti, D., Spagnolo, G. S. Study of free-convective onset on a horizontal wire using specle pattern interferometry// Int. Journal of Heat and Mass Transfer.– 2003. – Vol. 46, No. 22. – P. 4145–4155.
15. Yamamoto, S., Niiyama, D., Shin, B.R. A Numerical method for natural convection and heat conduction around and in a horizontal circular pipe// Int. Journal of Heat and Mass Transfer.– 2004. – Vol. 47, No. 26. – P. 5781–5792.
16. Corcione, M. Correlating equations for free convection heat transfer from horizontal isothermal cylinders set in a vertical array// Int. Journal of Heat and Mass Transfer.– 2005. – Vol. 48, No. 17. – P. 3660–3673.
17. Molla, M.M., Hossain, M.A., Paul, M. C. Natural convection flow from an isothermal horizontal circular cylinder in presence of heat generation// Int. Journal of Engineering Science.– 2006. – Vol. 44, No. 13–14. – P. 949–958.
18. Incropera, F.P., DeWitt, D. P. Fundamentals of Heat and Mass Transfer (In Turkish).4th Ed., P.: 540., Istanbul, 2001. 19. Kreith, F., Bohn, M. S. Principles of Heat Transfer, 6th ed., California: Brooks/ Cole,2001. – P. 317–318.
20. Cengel, Y. A. Heat and Mass Transfer (In Turkish). Izmir: Guven Bilimsel Kitabevi, 2011.
21. Quereshi, Z.H., Ahmad, R. Natural convection from a uniform heat flux horizontal cylinder at moderate Rayleigh numbers// Numerical Heat Transfer.– 1987. – Vol. 11, No. 2. – P. 199–212.
22. Molla, M.M., Paul, S.C., Hossain, M. A. Natural convection flow from a horizontal circular cylinder with uniform heat flux in presence of heat generation// Applied Mathematical Modelling.– 2009. – Vol. 33, No. 7. – P. 3226–3236.
23. Demir, H. Experimental and numerical studies of natural convection from horizontal concrete cylinder heated with a cylindrical heat source// Int. Communications in Heat and Mass Transfer.– 2010. – Vol. 37, No. 4. – P. 422–429.
24. Cheng, C. Y. Natural convection boundary layer flow of fluid with temperature- dependent viscosity from a horizontal elliptical cylinder with constant surface heat flux// Applied Mathematics and Computation.– 2010. – Vol. 217, No. 1. – P. 83–91.
25. Newport, D.T., Dalton, T.M., Davies, M.R.D., Whelan, M., Forno, C. On the Thermal interaction between an isothermal cylinder and its isothermal enclosure for cylinder Rayleigh number of order 104// ASME Journal of Heat Transfer.– 2001. – Vol. 123, No. 6. – P. 1052–1061.
26. Shih, T.I.P. Application of CFD in the automotive industry: Where do we want to be and how to get there?// Final Report for NSF Grant CTS‑0001794 East Lansing, MI, 2001.
27. Kobayashi, T., Tsubokura, M. CFD application in automotive industry. In: E. H. Hirschel et al. (Eds.), 100 Vol. Of Notes on Numerical Fluid Mechanics NNFM 100, Heidelberg: Springer, 2009. – P. 285–295.
28. ANSYS CFX 2012 version 12.1, user manual, www.ansys.com/products/ icemcfd. asp
29. Henson, J.C., Malalasekera, W.M.G. Comparison of the discrete transfer and monte carlo methods for radiative heat transfer in three-dimensional, nonhomogeneous, scattering media// Numerical Heat Transfer, Part A, Applications.– 1997. – Vol. 31, No. 1. – P. 19–36
30. Ji, Y., Cook, M.J., Hanby, V.I., Infield, D.G., Loveday, D.L., Mei, L. CFD modelling of double-skin façades with venetian blinds. In Proceedings of the IBPSA Building Simulation, 2007. – P. 1491–1498.
31. Langebach, J., Senin, S., Karcher, Ch. Experimental study of convection and radiation interaction in a headlight model using pressure variation// Experimental Thermal and Fluid Science.– 2007. – Vol. 32. – P. 521–528.
32. URL: http://203.158.253.140/media/ eBook/Engineer/Heat%20And%20 Mass%20Tr a n s f er/Handb ook%20 of%20Heat%20Transfer/35558_04.pdfhttp:// 203.158.253.140/media/eBook/ Engineer/Heat%20And%20Mass%20 Transfer/Handbook%20of%20Heat%20 Transfer/35558_04.pdf (Accessed in 13 August 2012).
33. Ashjaee, M., Eshtiaghi, A.H., Yaghoubi, M., Yousefi, T. Experimental investigation on free convection from a horizontal cylinder beneath an adiabatic ceiling// Experimental Thermal and Fluid Science.– 2007. – Vol. 32, No. 2. – P. 614–623.
34. Wang, P., Kahawita, R., Nguyen, T. H. Numerical computation of the natural convection flow about a horizontal cylinder using splines // Nmerical Heat Transfer, Part A, Applications.– 1990. – Vol. 17, No. 2. – P. 191–215.
35. Saitoh, T., Sajik, T., Maruhara, K. Benchmark solutions to natural convection heat transfer roblem around a horizontal circular cylinder// Int. Journal of Heat and Mass Transfer.– 1993. – Vol. 36, No. 5. – P. 1251–1259.
36. Razavi, S.E., Barar, F., Farhangmer, V. Characteristics-Based finite-volume soluton for natural convection around a horizontal cylinder// Journal of Applied Sciences.– 2008. – Vol. 8, No. 10. – P. 1905–1911.
37. Reymond, O., Murray, D.B., O’Donovan, T. S. Natural convection heat transfer from two horizontal cylinders// Experimental Thermal and Fluid Science.– 2008. – Vol. 32, No. 8. – P. 1702–1709.
38. Grafsronningen, S., Jensen, A. B., Reif, A.P. PIV investigation of buoyant plume from natural convection heat transfer above a horizontal heated cylinder// Int. Journal of Heat and Mass Transfer.– 2011. – Vol. 54, No. 23– 24, P. 4975–4987.
39. Atmane, M.A., Chan, V.S.S., Murray, D. B. Natural convection around a horizontal heated cylinder: The effects of vertical confinement// Int. Journal of Heat and Mass Transfer.– 2003. Vol. 46, No. 19. – P. 3661–3672.
40. Abu-Hijleh, B.A.K. Natural convection heat transfer from a cylinder with high conductivity permeable fins// ASME Journal of Heat Transfer.– 2003. – Vol. 125, No. 2. – P. 282–288.
41. Kreith, F., Bohn, M. S. Principles of heat transfer, 6th edn., California: Brooks/Cole, 2001. – P. 317–318.
42. Kuehn, T.H., Goldstein, R. J. Numerical solution to the Navier-Stokes equations for laminar natural convection about a horizontal isothermal circular cylinder// Int. Journal of Heat and Mass Transfer.– 1980. – Vol. 23, No. 7. – P. 971–979.
Ключевые слова
Рекомендуемые статьи
https://ahoj.stikesalifah.ac.id/pages/slot-depo-5000/http://ahoj.stikesalifah.ac.id/dana-resmi/https://dedikasi.lp4mstikeskhg.org/slot-dana-depo10k/https://mata.pulaumorotaikab.go.id/public/images/file/1711212514temp.htmlhttps://mata.pulaumorotaikab.go.id/public/images/avatar/1710788275avatar.htmlhttps://alwasilahlilhasanah.ac.id/starlight-princess-1000/https://ahoj.stikesalifah.ac.id/demo/https://www.sa-ijas.org/sweet-bonanza/https://www.remap.ugto.mx/pages/slot-luar-negeri-winrate-tertinggi/https://seer.anafe.org.br/pages/akun-pro-kamboja/https://sipusli.mojokertokab.go.id/upload/~/akun-pro-kamboja/https://bumdesjanjimanahansil.padanglawasutarakab.go.id/products/mpo/https://siduta.dukcapil.baritoselatankab.go.id/assets/idn/https://perizinan.jambikota.go.id/frontend/web/situs-gacor/https://revistas.uia.ac.cr/pages/products/sigmaslot/https://disbudpar.padanglawasutarakab.go.id/assets/https://bumdesjanjimanahansil.padanglawasutarakab.go.id/pt2/https://dedikasi.lp4mstikeskhg.org/docs/https://dedikasi.lp4mstikeskhg.org/slot-deposit-pulsa-tanpa-potongan/https://setwan.katingankab.go.id/asset/slot-dana/https://perizinan.jambikota.go.id/frontend/web/situs-pulsa/https://unsimar.ac.id/akun-pro-kamboja/https://catalog.ndp.utah.edu/uploads/user/2024-03-27-205738.327672mahjong2ways.html/https://mbkm.umkendari.ac.id/images/sgacor/https://beasiswa.umkendari.ac.id/application/https://fkip.umkendari.ac.id/assets/pulsa/https://bumdesjanjimanahansil.padanglawasutarakab.go.id/Assets/https://revistas.uroosevelt.edu.pe/public/https://civitic.indoamerica.edu.ec/gates-of-olympus/https://csecity.indoamerica.edu.ec/wp-content/mahjong-ways-2/https://newmalestudies.com/OJS/starlight-princess/https://newmalestudies.com/OJS/slot-depo-10k-qris/https://alwasilahlilhasanah.ac.id/demo-olympus/https://section.iaesonline.com/slot-gacor-maxwin/https://section.iaesonline.com/starlight-princess-1000/