Content
Number of images - 5
Tables and charts - 3
Effectiveness Of Moving Objects Detecting And Tracking In Airspace By Images In NearInfrared L&E, Vol.30, No.2, 2022

Light & Engineering 30 (2)

Volume 30
Pages 62–69

Purchase PDF - ₽450

Effectiveness Of Moving Objects Detecting And Tracking In Airspace By Images In NearInfrared L&E, Vol.30, No.2, 2022
Articles authors:
Stepan G. Nebaba, Nikolay G. Markov

Stepan G. Nebaba, Ph.D. He graduated from Tomsk Polytechnic University (TPU) in 2013 with a degree in Applied Mathematics and Informatics. At present, he is a Senior Lecturer, Department of Information Technology, Engineering School of Information Technology and Robotics at the National Research Tomsk Polytechnic University. His research interests: computer vision and image analysis

Nikolay G. Markov, Professor, Doctor of Tech.Sc. He graduated in 1973 from Tomsk State University with a degree in Radiophysics and Electronics. Professor of the Department of Information Technology of the Engineering School of Information Technology and Robotics at the National Research Tomsk Polytechnic University. His research interests: signal processing and computer vision

Abstract:
Objects in nearinfrared (NIR) images can often have different linear scales and shapes than the same objects in optical images for visible spectrum (RedGreenBlue, RGB). Therefore they can require different computer vision methods for detection, tracking, and classification. This paper devoted to the methods by which the problems of moving objects detecting and tracking in NIR images are solved. The main characteristics of moving objects in image sequences are highlighted. Advantages and disadvantages of different methods for detecting and tracking objects in NIR images of airspace are considered and two of the most promising methods classes are selected. Studies have been carried out on the effectiveness of LucasKanade method, which is one of the methods of local optical flow, and the ORB method of scaleinvariant transformation of features when detecting and tracking moving objects in NIR images. In numerical experiments, more than 5000 NIR images containing moving objects of three types were used as well as three combinations of considered methods. It is shown which combination is the most accurate in the tasks of moving objects detection and tracking and can be used for airspace automatic operational control and management based on computer vision systems. Probably, other combinations of methods from the two considered classes also can help to increase accuracy of moving objects detection and tracking in airspace by NIR images.
References:
1. Steger, C., Ulrich, M., Wiedemann, C. Machine Vision Algorithms and Applications / Weinheim: WileyVCH, 2018.
2. Zakharova, A.A., Korostelyov, D.A. Methods for Construction and Research Stereometric Visual Images of Multicriteria Alternatives // CEUR Workshop Proceedings, 2020. Vol. 2744, Part 2. Paper 23–1, doi:10.51130/graphicon2020–2–3–23.
3. ISO 20473:2007. Optics and photonics –Spectral bands, Geneva, 2007. 3 p.
4. Siwei, Y., Shaozuo, Y., Bingchen, Z., Yin, W. Reducing the feature divergence of RGB and nearinfrared images using Switchable Normalization // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020. pp. 206–211.
5. Mishchenko, A.M., Rachkovsky, S.S., Smolin, V.A., Yakimenko, I.V. Results of Spatial Structure of Atmosphere Radiation in a Spectral Range (1.5–2) µm // Light & Engineering, 2018. Vol. 26, No. 3. pp. 7–14.
6. Kataev, M. Yu., Dadonova, M.M., Efremenko, D. S. Illumination Correction of MultiTime RGB Images Obtained with an Unmanned Aerial Vehicle // Light & Engineering, 2021, Vol. 29, # 2, pp. 50–58.
7. Shaikh, S., Saeed, K., Chaki, N. Moving Object Detection Using Background Subtraction. // Springer Briefs in Computer Science. Springer, Cham, 2014, doi.org/10.1007/978–3–319–07386–6_3.
8. Alpatov, B.A., Babayan, P.V., Balashov, O.E., Stepashkin, A.I. Metody avtomaticheskogo obnaruzheniya i soprovozhdeniya ob”ektov // Obrabotka izobrazhenij i upravlenie. Moscow: Radiotekhnika, 2008. 176 p.
9. Ivanov, V.A., Kirichuk, V.S., Kosyh, V.P., Sinel’shchikov, V.V. Osobennosti obnaruzheniya tochechnyh ob”ektov v izobrazheniyah, formiruemyh matrichnym priyomnikom // Avtometriya, 2016. Vol. 52(2). pp. 10–19, doi:10.15372/AUT20160202.
10. Berezin, V.V., Cyculin, A.K. Obnaruzhenie i ocenivanie koordinat izobrazhenij tochechnyh ob”ektov v zadachah astronavigacii i adaptivnoj optiki // Vestnik Tihookeanskogo gosudarstvennogo universiteta, 2008. Vol. 1. pp. 11–20.
11. Kvarnstrom, M. et al. Image analysis algorithms for cell contour recognition in budding yeast // Optics express, 2008. Vol. 16. pp. 12943–12957, doi:10.1364/OE.16.012943.
12. Sablina, V.A., Novikov, A.I., Nikiforov, M. B., Loginov, A.A. Contour analysis application for object detection in aerial image sequence // 2014 3rd Mediterranean Conference on Embedded Computing (MECO), Budva, 2014. pp. 102–107, doi:10.1109/MECO.2014.6862668.
13. Kuhne, G., Richter, S., Beier, M. Motionbased segmentation and contourbased classification of video objects // Proceedings of the 9th ACM international conference on Multimedia, 2001. pp. 41–50, doi:10.1145/500141.500150.
14. Vishnyakov, B.V., Vizil’ter, Yu.V., Lagutenkov, A.V. Ispol’zovanie modificirovannogo metoda opticheskih potokov v zadache obnaruzheniya i mezhkadrovogo proslezhivaniya dvizhushchihsya ob”ektov // Vestnik komp’yuternyh i informacionnyh tekhnologij, 2007. Vol. 5. pp. 2–8.
15. Bolotova, Yu.A. Druki, A.A., Spicyn, V. G. Metody i algoritmy intellektual’noj obrabotki cifrovyh izobrazhenij / Ucheb. Posobie. Tomsk: Izdvo Tomskogo politekhnicheskogo universiteta, 2016. 208 p.
16. Vizil’ter, Yu.V., Vishnyakov, B.V. Issledovanie povedeniya avtoregressionnyh fil’trov v zadache vydeleniya i analiza dvizheniya na cifrovyh videoposledovatel’nostyah. Vestnik komp’yuternyh i informacionnyh tekhnologij, 2008. Vol. 8. pp. 2–8.
17. Beklemishev, N.D. The algorithm for the video tracking of the moving object // Preprints of the Keldysh Institute of Applied Mathematics, 2018. pp. 57–65, doi:10.20948/prepr2018–57.
18. Mitrofanov, S.A. Sravnenie effektivnosti razlichnyh metodov intellektual’nogo analiza dannyh v zadachah raspoznavaniya izobrazhenij // Innovacionnaya nauka, 2015. Vol. 12–2. pp. 96–98.
19. Tao, M., Bai, J., Kohli, P., Paris S. Simple Flow: A Noniterative, Sublinear Optical Flow Algorithm // Computer Graphics Forum, 2012. Vol. 31, doi:10.1111/j.1467–8659.2012.03013.x.
20. Gunnar Farneback “Twoframe motion estimation based on polynomial expansion” // Proceedings of the 13th Scandinavian conference on Image analysis (SCIA’03). SpringerVerlag, Berlin, Heidelberg, 2003. pp. 363–370. doi:10.1007/3–540–45103X_50
21. Bouguet, J.Y. Pyramidal implementation of the lucas kanade feature tracker // Intel Corporation, Microprocessor Research Labs, 1999.
22. Rublee, E., Rabaud, V., Konolige, K., Bradski, G. ORB: an efficient alternative to SIFT or SURF // Proceedings of the IEEE International Conference on Computer Vision, 2011. pp. 2564–2571. doi:10.1109/ICCV.2011.6126544.
Keywords

Buy

Recommended articles
https://ahoj.stikesalifah.ac.id/pages/slot-depo-5000/http://ahoj.stikesalifah.ac.id/dana-resmi/https://dedikasi.lp4mstikeskhg.org/slot-dana-depo10k/https://mata.pulaumorotaikab.go.id/public/images/file/1711212514temp.htmlhttps://mata.pulaumorotaikab.go.id/public/images/avatar/1710788275avatar.htmlhttps://alwasilahlilhasanah.ac.id/starlight-princess-1000/https://ahoj.stikesalifah.ac.id/demo/https://www.sa-ijas.org/sweet-bonanza/https://www.remap.ugto.mx/pages/slot-luar-negeri-winrate-tertinggi/https://seer.anafe.org.br/pages/akun-pro-kamboja/https://sipusli.mojokertokab.go.id/upload/~/akun-pro-kamboja/https://bumdesjanjimanahansil.padanglawasutarakab.go.id/products/mpo/https://siduta.dukcapil.baritoselatankab.go.id/assets/idn/https://perizinan.jambikota.go.id/frontend/web/situs-gacor/https://revistas.uia.ac.cr/pages/products/sigmaslot/https://disbudpar.padanglawasutarakab.go.id/assets/https://bumdesjanjimanahansil.padanglawasutarakab.go.id/pt2/https://dedikasi.lp4mstikeskhg.org/docs/https://dedikasi.lp4mstikeskhg.org/slot-deposit-pulsa-tanpa-potongan/https://setwan.katingankab.go.id/asset/slot-dana/https://perizinan.jambikota.go.id/frontend/web/situs-pulsa/https://unsimar.ac.id/akun-pro-kamboja/https://catalog.ndp.utah.edu/uploads/user/2024-03-27-205738.327672mahjong2ways.html/https://mbkm.umkendari.ac.id/images/sgacor/https://beasiswa.umkendari.ac.id/application/https://fkip.umkendari.ac.id/assets/pulsa/https://bumdesjanjimanahansil.padanglawasutarakab.go.id/Assets/https://revistas.uroosevelt.edu.pe/public/https://civitic.indoamerica.edu.ec/gates-of-olympus/https://csecity.indoamerica.edu.ec/wp-content/mahjong-ways-2/https://newmalestudies.com/OJS/starlight-princess/https://newmalestudies.com/OJS/slot-depo-10k-qris/https://alwasilahlilhasanah.ac.id/demo-olympus/https://section.iaesonline.com/slot-gacor-maxwin/