Content
Number of images - 5
Effective Electrodynamic Parameters of Nano-Composite Media and the Theory of Homogenisation. L&E 27 (№1. 2019)

Light & Engineering 27 (1)

Volume 27
Date of publication 02/20/2019
Pages 4–14

PDF

Effective Electrodynamic Parameters of Nano-Composite Media and the Theory of Homogenisation. L&E 27 (№1. 2019)
Articles authors:
Leon A. Apresyan

Leon A. Apresyan, Ph.D. (Phys.-Math.Sci.1978), graduated from Moscow Physical-Technical Institute (MPhTI) in 1972. At present, he is the Senior Researcher in Prokhorov General Physics Institute of the Russian Academy of Sciences. His fields of interest are statistical radio-physics and electrodynamics of randomly inhomogeneous media

Abstract
When creating new lighting and optoelectronic devices, great attention in recent years is paid to use nano-composite materials, i.e. the media containing impregnations of nanometre size, such as nano-particles of metals, quantum points, carbon nanotubes, graphenes, etc. This allows obtaining media with new, formerly unattainable characteristics. An initial point when describing properties of such medias is usually evaluation of their effective parameters (dielectric permeability, conductivity, heat conduction and of other similar transport coefficients) media, in other words, media containing macroscopic impregnations with known or determined from experiments characteristics. Main approaches used in such cases are known Maxwell Garnett and Bruggeman approximations. In this review, methodical questions connected with various approaches to obtain these approximations and of their generalisations are discussed. Also some new results are given, which connected with evaluations of percolation thresholds within generalised Bruggeman approximations in the event of multi-component media.
References
1. Milichko V. A., Shalin A.S., Mukhin I.S. Kovrov A.E., Krasilin A.A., Vinogradov A.V., Belov P.A., Simovsky K.R. Solar photovoltaics: current state and trends of development //Achievements of physical sciences, 2016, V.186, pp. 801–852. DOI:10.3367/UFNr.2016.02.037703
2. Valenta J., Mirabella S. (Eds.) Nanotechnology and Photovoltaic Devices: Light Energy Harvesting with Group IV Nanostructures.Taylor & Francis Group, 2015, 441p.
3. Lourtioz J.-M. et al., eds. Nanosciences and Nano-technology: Evolution or Revolution? – Springer, 2016, 438 p. DOI:10.1007/978–3–319–19360–1
4. Di Bartolo B., Collins J., Silvestri L. (eds.) Na-no-Structures for Optics and Photonics: Optical Strategies for Enhancing Sensing, Imaging, Communication and Energy Conversion. Springer, 2015, 586p.
5. Novotny L., Hekht B. foundations of nanooptics, Moscow: Fizmatlit, 2009, 484 p.
6. Quinten M. Optical properties of nanoparticle systems: Mie and beyond. Weinheim: Wiley-VCH, 2011, 488p. DOI:10.1016/j.jqsrt.2011.10.001
7. Boren K., Hafman D. Absorption and scattering of light by small particles. Moscow: Mir, 1986, 660 p.
8. Milton G.W. The Theory of Composites. Cambridge Univ. Press, 2004, 749 p.
9. Sihvola A. Electromagnetic Mixing Formulas and Applications, Electromagnetic Wave Series 47, London: IEE Publishing, 1999, 284p.
10. Markel V.A. Introduction to the Maxwell Garnett approximation: tutorial// J. Opt. Soc. Amer. 2016, A 33, No.7, pp.1244–1256. DOI:1084–7529/16/071244–13
11. Markel V.A. Maxwell Garnett approximation (advanced topics): tutorial // J. Opt.Soc.Amer.-2016, A 33, № . 11, pp.2237–2255. DOI:1084–7529/16/112237–19
12. Sarychev A. K., Shalaev V.M. Electrodynamics of metamaterials. Moscow: Naychny Mir, 2011, 224 p.
13. Cai W., Shalaev V. Optical Metamaterials. Springer, 2009, 200 p. DOI: 10.1007/978–1–4419–1151–3
14. Remnev M. A., Klimov V.V. Metasurfaces: a new view on Maxwell’s equations and new methods of light control // Achievements of physically sciences. 2018, V. 188, pp. 169–205.
15. Andrianov E. S., et al. Quantum nanoplasmonics. Dolgoprudny: Intellect Publiching house, 2015, 368 p.
16. Pal R. Electromagnetic, Mechanical, and Transport Properties of Composite Materials, 2015, CRC Press, 400p.
17. Aliofkhazraei M., ed., Handbook of Nanoparticles. Springer, 2015, 1439 p. DOI 10.1007/978– 3–319–15338–4
18. Kong E. S.W. K., ed. Nanomaterials, polymers, and devices. Wiley, 2015, 584p.
19. Stenzel O. The physics of thin films. Optical spectra. An Introduction. 2nd Edition. Springer, 2016, 352 p. DOI: 10.1007/978–3–319–21602–7
20. Rosenberg G.V. Current state of the theory of optical properties of translucent metal coatings // Achieve-ments of physically sciences, 1956, V.58, pp. 487–518. DOI:10.3367/UFNr.0058.195603d.0487
21. Maxwell J.C. Treatise on electricity and magnetism. V.1. Мoscow: Nauka, 1989, 415 p.
22. Landau L. D., Lifshits E.M. Electrodynamics of solid environments. The 4th, stereotypic edition. Moscow: Fizmatlit, 2003, 656 p.
23. Taherian R. Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites // Composites Science and Technology.2015. DOI: 10.1016/j.compscitech.2015.11.029
24. Lamb W., Wood D.M. and Ashcroft N.W. Longwavelength electroma gnetic propagation in heterogeneous media // Phys. Rev.1980, B21, № 6, pp.2248–2266. DOI: 10.1103/PhysRevB.21.2248
25. Maxwell Garnet J.C. Colours in metal glasses and in metallic films // Phil. Trans.R.Soc.London. 1904, A203, pp.385–420; Colours in metal glasses, in metallic films, and in metallic solutions, II., ibid. 1906, A 205, pp.237–288.
26. Strutt J. (Lord Rayleigh). On the influence of obstacles arranged in rectangular order upon the properties of a medium// Phil. Mag.1892, V. 34, 481p. DOI:10.1080/14786449208620364
27. Bruggeman D.A.G. Calculation of various physics constants in heterogeneous substances. I. Dielectric constants and conductivity of mixed bodies from isotropic substances //Ann. Phys. 1935, V.23, pp.636–664. DOI:10.1002/andp.19354160705
28. Smith G.B. Effective medium theory and angular dispersion of optical constants in films with oblique columnar structure// Opt. Commun. 1989, V.71, № 5, pp.279–284. DOI:10.1016/0030–4018(89)90008–4
29. Schmidt D., Schubert M. Anisotropic Bruggeman effective medium approaches for slanted columnar thin films //J. of Applied Physics. 2013, V.114, № 8, 083510. DOI: 10.1063/1.4819240
30. Mackay T.G., and A. Lakhtakia A. Bruggeman formalism versus “Bruggeman formalism”: particulate composite materials comprising oriented ellipsoidal par-ticles // J.of Nanophotonics. 2012, V.6, № 1, 0695012. DOI:10.1117/1.JNP.6.069501
31. Apresyan L. A., Vlasov D.V. On factors of depolarisation of anisotropic ellipsoids // Journal of technical physics. 2014, V. 84, #12, pp. 23–28.
32. Rytov S. M., Kravtsov Yu. A., Tatarsky V.I. Introduction in statistical radiophysics. V.1.2. Moscow: Nauka, 1978.
33. Tamm I.E. Fundamentals of theory of electricity: Textbook for high education institutions. Revised 11th edition, Moscow: Fizmatlit, 2003, 616 p, ISBN5–9221–0313-X.
34. Stroud D., Pan F.P. Self-сonsistent approach to electromagnetic wave propagation in composite media: Application to model granular metals// Phys.Rev. 1988, B37, № 15, pp.8719–8724.
35. L. A. Apresyan, D.V. Vlasov, D.A. Zadorin, V.I. Krasovsky. On a model of effective environment for particles with complex structure // Journal of technical physics. 2017, V.87, № 1, pp. 10–17. DOI: 10.21883/JTF.2017.01.44011.1841
36. Brosseau C. Modelling and simulation of dielectric heterostructures: a physical survey from an historical perspective // J. Phys. D: Appl. Phys.– 2006. – V. 39. – P. 1277–1294. DOI:10.1088/0022–3727/39/7/S02
37. Petrov Yu.I. Physics of small particles. Moscow: Nauka, 1982, 359 p.
38. Orayevsky A.N., Protsenko I.E. A high refraction factor and other features of optical properties of heterogeneous environments // Letters to JETP. 2000, V.72, pp. 641–646.
39. Liznev E. O., Dorofeenko A.V., Vinogradov A.P. Creation of environments with dielectric permeability close to zero in a wide frequency interval // Op-tical journal. 2010, V.77, pp. 11–12.
40. Moiseev S.G. Composite medium with silver na-noparticles as an anti-reflection optical coating//Applied Physics A. 2011, V.103, pp. 619–622.
41. Marton J.P., Lemon J.R. Optical properties of aggregated metal systems. 1.Theory // Phys.Rev.– 1971, V. B4, № 2, pp.271–280.
42. Bergman D.J., Stroud D. Physical properties of macroscopically inhomogeneous media // Solid State Physics Phys, 1992, V. 46, pp.148–269.
43. Wang Y. and Weng G.J. Electrical conductivity of carbon nanotube and graphen-based nanocomposites, Ch. 4 in: S.A. Meguid, G.J. Weng (eds.), Micromechanics and Nanomechanics of Composite Solids, Springer International Publishing AG 2018. DOI 10.1007/978–3–319–52794–9_4123
44. Liang D., Schmid D., Wang H. et al. Generalized ellipsometry effective medium approximation analysis approach for porous slanted columnar thin films infiltrat-ed with polymer // Applied Physics Letters, 2013, V. 103, № 11, 111906 (1). DOI: 10.1063/1.4821159
45. Vinogradov A. P., Dorofeenko A.V., Zukh-di S. Concerning the question of effective parameters of metamaterials // Achievements of physical sciences. 2008, V. 178, #5, pp. 511–518.
Keywords
Recommended articles