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ABSTRACT

When creating new lighting and optoelectronic 
devices, great attention in recent years is paid to use 
nano-composite materials, i.e. the media containing 
impregnations of nanometre size, such as nano-par-
ticles of metals, quantum points, carbon nanotubes, 
graphenes, etc. This allows obtaining media with 
new, formerly unattainable characteristics. An ini-
tial point when describing properties of such me-
dias is usually evaluation of their effective para-
meters (dielectric permeability, conductivity, heat 
conduction and of other similar transport coeffi-
cients) in the model of macroscopically heterogene-
ous media, in other words, media containing mac-
roscopic impregnations with known or determined 
from experiments characteristics. Main approach-
es used in such cases are known Maxwell Gar-
nett and Bruggeman approximations. In this re-
view, methodical questions connected with various 
approaches to obtain these approximations and of 
their generalisations are discussed. Also some new 
results are given, which connected with evaluations 
of percolation thresholds within generalised Brug-
geman approximations in the event of multi-com-
ponent media.

Keywords: nano-composite media, effec-
tive parameters, quasistatic approximation, Max-
well Garnett approximation, Bruggeman appro-
ximation, percolation threshold, multi-component 
composites

1. INTRODUCTION

A constant improvement of lighting devices con-
nected with development of modern technology 
applications, such as photovoltaic [1, 2] and opto-
electronics [3–6], brings to the forefront the prob-
lem of creating new optical materials with unattain-
able formerly properties. This problem is solved 
in particular by obtaining new composite mate-
rials. If it comes to the purely optical aspect of 
the problem abstracting from numerous applica-
tions of composites, such as power mechanical, 
heat-conducting, etc. structures, then first it is about 
nano-composites, i.e. about the composites with 
non-unifor mity size of tens nanometres. Such in-
clusions are various carbon structures (nano-tubes, 
graphenes, fullerenes), quantum dots, as well as me-
tal nano-particles, which are used long since from 
the historical point of view. Study of such objects 
has led to creation of a new science direction known 
as nano-photonics, or otherwise as nano-optics [5, 
6] being a subsection of general photonics, which is 
a science about transformation and propogation of 
photons within the interval from IR to ultraviolet.

Nano-photonics studies behaviour of light “com-
pressed” to nanometre sizes, as well as its interac-
tion with the nanometre objects. Both of these di-
rections are interconnected. The first part is focused 
on overcoming the Rayleigh limit (i.e. impossi-
bility of photon localisation in normal conditions 
on scales smaller than the wavelength) due to plas-
mon effects in metal nano-particles, nano-sized ap-
ertures or spires used in the near-field scanning mi-
croscopy. The second encloses study both of purely 
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quantum features of light interaction with single 
nano-objects, and of properties of ensembles with 
large number of N >> 1 particles, which is typi-
cal for the case of composite media. The prospec-
tive nano-photonics application field is extremely 
wide and includes both already quoted applications 
in solar photovoltaic and optoelectronics, and many 
other fields: lighting engineering, electrical engi-
neering, biophysics and biochemistry, medicine, 
etc. Large lists of references are available in mono-
graphs [2–6].

Nano-sized particles with a good approxima-
tion can be considered as purely classical mac-
ro-objects with their macro-characteristics (dielec-
tric and magnetic permeability, conductivity, heat 
conduction, etc.). Besides, they can be “corrected” 
if necessary to account micro-effects (such as lim-
itation of electron free path length by the particle 
size [7]). If such inclusions are distributed in a com-
posite spatially uniformly, then as the first step, the 
composite can be characterised using some aver-
aged “effective parameters”, which are closely con-
nected with specific measurements and are often 
sufficient for the composite description correspond-
ing to practical applications. In doing so, it is con-
sidered that the composite volume under study can 
be replaced when calculating with the same volume 
of a homogeneous medium described using effec-
tive parameters. A creation of models and calcula-
tion of such parameters is called homogenisation. 
And in materials science, “mixing formulas” (mix-
ing rules) name is widely used instead of this term 
[8, 9]).

This review considers methodical questions of 
creating the main models used during homogeni-
sation, as well as some new results connected with 
evaluation of percolation thresholds. The review is 
first of all intended for students and graduate stu-
dents who are interested, how to obtain effective pa-
rameters and to use practically homogenisation me-
thods. The reference list is very limited and mainly 
contains references to the last monographs and re-
views, as well as to some very instructive classical 
works, which became available in Internet. Useful 
discussions of similar questions in reviews should 
be also noticed [10, 11]. The problems connected 
with description of single diffusers with plasmon-
ics and quantum effects, as well as with optics of 
meta-materials [12, 13] and meta-surfaces [14] ob-
tained by artificial of ordering nano-particles are not 
considered here. We will refer in this regard to the 

recently appeared monographs [14–19] describing 
electrodynamics of nano-particles. These mono-
graphs are suitable for a deeper study of the speci-
fied problems.

Methodical questions connected with a possi-
bility of introduction of effective parameters are 
discussed in Section 2 (where, when, why). Ap-
proaches used to obtain most widespread appro-
ximations of homogenisation, namely: Maxwell 
Garnett (MG) approximation and of Bruggeman ef-
fective medium (Effective Medium Approximation, 
EMA) in the simplest model of spherical “effective 
cells” are discussed in Section 3. Ge neralisations of 
these approximations for the case of elliptic cells 
are described in Sections 4 and 5. Expressions for 
percolation thresholds in the gene ralised Brugge-
man approximations are considered in Section 6. 
Main conclusions are briefly formulated in Sec-
tion 7.

2. GENERAL REASONS

On the face of it, the “optics of composites” con-
cept usually is at once associated with the need of 
the attraction of the multiple scattering theory, as 
composites inherently contain many of statistically 
distributed scattering non-uniformities. This is real-
ly so in case of a complete wave description of the 
problem.

Fortunately, it turns out that for composites with 
small-scale non-uniformities relative to the wave-
length, simple heuristic models suitable both for de-
scription of experiments and for creation of compo-
sites with required properties are often rather well 
usable. Good results can be obtained when using 
even very rough characteristics of real composites, 
such as volumetric relations of the components. 
However, as inner structure of various composites 
with a set volume of the components can differ es-
sentially, one cannot recon to obtain “universal” 
dependences of effective parameters on limited 
number of the composite characteristics equally 
suitable for a wide range of problems. When chang-
ing inner parameters of a composite, which control 
is usually difficult, or when changing the measure-
ment method, or the used radiation wavelengths, 
different models of effective parameters can be 
claimed.

This explains a wide use in applications of vari-
ous homogenisation models. So, the model choice 
to a large extent depends on intuition of the experi-
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menter and on quality of the results obtained when 
customising free parameters.

A possibility of introduction of effective para-
meters is not obvious; it can be implemented not 
in all cases and depends not only on structure of 
the composite but also on the measurement me-
thod (see, e.g., an old review [20], where former 
and often unsuccessful attempts to replace insular 
films with equivalent uniform layers are discussed). 
A wide class of the problems, for which effective 
parameters are especially useful, is enclosed by the 
quasistatic approximation, when wavelength of the 
used radiation is big in comparison with the compo-
site non-uniformities, and not precise characteristics 
of the field are measured but only averaged by space 
size, which is much more than the non-uniformity 
size. One can say that in doing so neither the wave, 
nor the observer “notice” small-scale fluctuations, 
which always take place, when the space size is of 
the medium non-uniformities size order. A strict de-
scription of such fluctuations is outside the effective 
parameters theory.

For small-scale composites, a close analogy 
of homogenisation with the classical fundamental 
problem of statistical substantiation of macroscopic 
electrodynamics exists. This analogy concerns the 
transition from micro- to macro-description of the 
observed values. Really, this transition means a pos-
sibility to use macroscopic, i.e. averaged by physi-
cally infinitely small environment volume charac-
teristics to create electrodynamics of macroscopic 
bodies of any configuration. The difference is that 
if in statistical physics, atoms and molecules ap-
pear as primary micro-objects, which differ from 
each other not too essentially (except for the case 
of macromolecules), then in the event of compo-
sites they are replaced with macroscopic non-uni-
formities, which configuration can change in a ran-
dom way within rather wide limits. In other words, 
a variety of inner structures for composites is much 
wider than for macroscopically uniform bodies usu-
ally considered in statistical physics. Therefore if 
to distract from quantum effects and from difference 
in freedom degree number, in some specified sense, 
a strict calculation of effective parameters gives 
much more many-sided problem than calculation of 
macro-characteristics of molecular objects.

The simplest composite version is a two-com-
ponent mixture with volume component parts f0 
and f1 (so that f0 + f1= 1). For a more distinctness, 
we primarily consider a mixture of two dielectrics 

with dielectric permeability ε0 and ε1, though simi-
lar reasoning are also applicable for many other ki-
netic coefficients: electrical conductivity, heat con-
duction, diffusion coefficient, etc. [8]. Inherently, 
in each point of a composite, induction D(r) is ex-
pressed using dielectric permeability ε(r) and elec-
tric field strength E(r) as D (r) = ε(r)E(r). In this 
connection, effective permeability ε* is determined 
by the following relation:

*( ) ( )v vε=D r E r , (1)

where angular brackets mean averaging over vo-
lume V,

1
v

V

dr
V

= ∫ , (2)

and instead of points there can be an arbitrary func-
tion r. As V, “physically infinitely small volume” 
is selected. This volume contains many (N >>1) 
non-uniformities, but it is small in comparison with 
the composite size. And it is supposed that statisti-
cal uniformity of a composite, as well as choice of 
the electromagnetic field source, allow considering 
ave raged values of ( ) vD r and ( ) vE r  to be con-
stant, i.e. not dependent on the choice of point r.

Effective dielectric permeability of a composite 
as function of volume parts should meet obvious 
“boundary conditions” (for clearness, it is written 
down as ε* (f0, f1)):

* *
0 1(1,0) , (0,1)ε ε ε ε= = . (3)

These conditions correspond to the full filling 
environment of one component. As a matter of fact, 
strictly speaking, condition (3) is not necessary for 
practical applicability of ε* various models as suit-
ability of most of them even for composite narrow 
classes is usually limited to some field of values of 
f0 and f1 only. Nevertheless, conditions (3) are per-
formed in many empirical and simulation approxi-
mations for ε* mentioned in the publications. But 
this fact should not mislead concerning their ap-
plicability with any relations of f0 and f1. General-
ly accomplishment of conditions (3) can be only 
considered as a courageous extrapolation of the 
considered model for the whole interval of f0 and 
f1 concentrations. The perturbation theory by con-
centration of one of the components, such as f1, re-
quires a smallness of this concentration in compa-
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rison with 1 and naturally is unsuitable with f1 ~ 
1, though effective value ε* calculated according 
to this theory sometimes can be also applied with f1 
concentration being not too small.

To obtain an expression for effective permittiv-
ity ε* automatically meeting conditions (3), they 
often use a formal trick already going from clas-
sical works of Maxwell [21]: they empirically se-
lect function F (ε(r)) so that ε* is determined from 
equation:

*
0 0 1 1( ) ( ( )) ( ) ( )vF F r f F f Fε ε ε ε= = + .

In [22] this property is called additivity of F 
(ε(r)). In this case, at uniform filling of a composite 
using dielectric with ε0 or ε1, fluctuations disappear 
and, averaging symbol can be omitted, which at 
once gives ε* = ε, provided that F- is an unambigu-
ously reversible function. In the referenced publica-
tions, for different problems, most different choices 
of the F(x) function were used and are widely used 
up to now, namely: F= x, 1/x, x1/3, log x, ½(x+1/x), 
etc. (see, e.g. the report of various approximations 
in [23]). It should be noticed that the MG approxi-
mation considered below can also be referred to this 
class, if to consider F to be depended on the dielec-
tric permeability matrix.

By nature (or more precisely, by topology) of 
the spatial structure, composites can be usually 
separated into aggregates (statistically symmetric, 
like powder mixtures), and cermets (asymmetric), 
in which spatial distribution statistics of a matrix is 
other than statistics of fillers as it is in the event of 
environments with random impregnations (Fig. 1, 
[24]). In the first case, if consider topological as-
pects only, i.e. connectivity of a composite compo-
nent, it is impossible to divide formally the matrix 
and the inclusions. Below we will mainly describe 
the cermet case, or otherwise media with random 

impregnations, when statistical properties of the 
components are various, and matrix can be sepa-
rated from them (for definiteness, it will be the first 
component, i.e. f0) and impregnations (it will be the 
second component, i.e. f1).

Most widespread approximations meeting these 
two topologies are Maxwell Garnett approximations 
[25] 1, which in an elementary form are often writ-
ten as the equation:

*
0 1 0

1*
0 1 02 2

fε ε ε ε
ε ε ε ε

− −=
+ +

, (4)

and symmetrical Bruggeman approximation of an 
effective medium [27].

* *
0 1

0 1* *
0 1

0
2 2

f fε ε ε ε
ε ε ε ε

− −+ =
+ +

, (5)

Another asymmetric Bruggeman approxima-
tion is also known but we don’t consider it here.

Approximations (4) and (5) are based on use 
of the spherical particle model. When generalis-
ing these relations for the case of non-spherical par-
ticles, ellipsoid model is usually initial. It also is 
widely used in the referenced publications. In the 
elementary case of identical and equally oriented 
(mono-directed) ellipsoids, the medium becomes 
anisotropic, and relation (5) is transformed to the 
following:

* *
0 1

0 1* * * *
0 1

0
( ) ( )i i

f f
L L
ε ε ε ε

ε ε ε ε ε ε
− −+ =

+ − + −
, (6)

where Li is depolarisation factor along the axis un-
der consideration (see below). Relation (6) is cor-
rect for three orthogonal axes i = x, y, z coinciding 
with main axes of the ellipsoid. If as Li, normal de-
polarisation factors are used, which are determined 
for an isotropic medium, then (6) gives three inde-
pendent equations for each of axes. This approxi-
mation is known as “traditional” [28, 29], and has 

1 Relation (4) is often called “Maxwell Garnett formula” con-
necting it by that with J. C. M Garnett [25], (one of his names was 
Maxwell). A more correct is “Maxwell-Garnett formula”, which takes 
into consideration thereby the fundamental contribution of Maxwell who 
had obtained an equivalent result for conductivity long before Garnett 
[21]. An addition here of Rayleigh name who obtained this formula 
also before Garnett together with correction terms [26], would make it 
somewhat awkward, though more informative.

Fig. 1. Topology of composites: (a) cermets: discrete im-
pregnations into a matrix (b); aggregates: symmetric  
filling of a composite without selected matrix [23]
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been widely used in applications. In case of a more 
sequential approach [30], depolarisation factors as 
Li in anisotropic medium differ from normal depo-
larisation factors [31]. And then (6) appears to be 
a more complex system of three connected equa-
tions (a comparison of these approaches is available 
in [29]). A successful use of equation (6) with “in-
correct” depolarisation factors in some applications 
should not be surprising, if to take into account that 
all considered models are a consequence of use of 
a less exact approximation using Li as adjustable pa-
rameters. It should be noticed that in the model of 
chaotically oriented ellipsoids, medium again be-
comes statistically isotropic, so even formal neces-
sity to use depolarisation factors in anisotropic me-
dium in this case is eliminated.

Any macroscopic composite is a particular case 
of non-uniform dielectrics with dielectric permea-
bility ε(r), which is a complex function of spatial 
co-ordinate r. As in practical situations, ε(r) dis-
tribution in each point is not measured and some 
external parameter values are only recorded (like 
components relation) and ε(r). As a result, E(r) can 
be considered as some random fields [32]. In case 
when their spatial correlations quickly decrease 
(a spatial ergodicity takes place), averaging with re-
spect to volume can be replaced by statistical aver-
aging [32]. Such replacement of volumetric averag-
ing by averaging over a statistical ensemble will be 
used below.

Equations (4) –  (6) can be solved easily, if ex-
plicit dependences ε*( f0, f1, ε1, ε2), are obtained. 
However, generally accepted configurations of 
equations (4) –  (6) are convenient first to compare 
with other versions of these theories, and second-
ly as observance of boundary conditions (3) fol-
lows from them with evidence. Though formally 
approximation (4) is derived for the case of cer-
met topo logy, and (5) and (6) are for aggregates, 
both these approximations are often used inde-
pendently from the composite expected topology. 
Let’s consider the main approaches to obtain these 
approximations.

3. HOMOGENISATION METHODS

In the referenced publications, many various 
approaches to obtain approximations (4) –  (6) and 
their generalisations are described. We give brief-
ly most widespread of them. As these approaches 
are multiply repeated in the publications, we don’t 
give numerous references to the sources (see, e.g., 
[8–11]).

Lorentz sphere method is most widespread 
when obtaining the considered approximations. 
Each diffuser is mentally surrounded with a big 
sphere (Fig. 2), and it is considered that effective 
field EL near it is composed from averaged E  plus 

Lorentz field 03P ε  (in the CGS system 4 3Pπ

) from diffusers out of the sphere, which are consi-
dered as point dipoles with polarizability α1 
“smeared out” into continuous environment 

03LE E P ε= + , where P is average polariza-

tion. And field of particles inside the sphere is con-
sidered on average to be equal to zero in the centre 
of the sphere, which is correct not in all cases (see, 
e.g., discussion in the classical textbook [33]. Sup-
posing that average polarization 1 LP n Eα= , where 

n = N/V is average number of particles in the vo-
lume unit, it is easy to obtain the known Clausi-
us-Mossotti formula (it is also named Lorentz-Lor-
entz formula, if it is written down for particles 
in vacuum refraction index *ε ).

*
0 1

*
0 02 3

nε ε α
ε ε ε

− =
+

. (7)

Replacement of polarizability of dot dipoles 
α1with the well-known polarizability of volume v1 
sphere with dielectric constant ε1 (see, e.g., [9]) 2,

1 0
1 1 0

1 0

3
2

v ε εα ε
ε ε

−=
+

, (8)

2 It should be noticed that different authors determine polarizability 
of a particle in dielectric medium with ε0 differently: either as in (6): α = 
P/E [9], or as P/(ε0E) [7], where P is particle dipolar moment, which 
should not lead to misunderstanding.

Fig. 2. Lorentz’s sphere



Light & Engineering Vol. 27, No. 1

9

transforms (7) into MG formula (4). The same rela-
tion (7) is often used to generalise MG approxima-
tion to more complex particle sets, for which it is 
enough to substitute the sum of the correspon dent 
polarizabilities in (7) instead of n α1. So for exam-
ple, for a set of ni spherical particles with different 
dielectric permeability εi, i = 1.2,…, we have from 
(7):

*
0

*
10 02 3

i i

i

nε ε α
ε ε ε≥

− =
+ ∑ . (9)

Equivalent scatterer method originates from 
classical studies of Maxwell [21]. Spherical volume 
V of a composite is selected with non-uniformities 
interpreted as spherical impregnations of dielec-
tric permeability εi in matrix εm, where εm is a heu-
ristically selected free parameter (Fig. 3). Effec-
tive permittivity ε* is selected from the requirement 
that scattered field far from V coincides with a scat-
tered field with uniform filling of volume V by me-
dium with dielectric permeability ε* provided that 
the particles are sufficiently rarefied and that they 
scatter independently from each other. For this pur-
pose, it is enough to equate polarizability of a uni-
form sphere to the sum of the polarizabilities of the 
particles of the composite sphere, which gives as 
follows:

V m

m1

*-
* 2
ε ε

ε ε+
 = v0

0 m

0 m

-
2

ε ε
ε ε+

 + v1
1 m

1 m

-
2

ε ε
ε ε+

,

or as fi = vi/V,
*

0 1
0 1*

0 12 2 2
m m m

m m m

f fε ε ε ε ε ε
ε ε ε ε ε ε

− − −= +
+ + +

. (10)

Believing here εm = ε0, we obtain MG approxi-
mation (4), and with εm = ε* it is Bruggeman appro-
ximation (5). It should be noticed that in work [34], 
the considered condition was extended to the gene-
ral case as a requirement of absence of scattering 
towards “forward” in the effective medium. Hav-
ing replaced spherical objects with ellipsoids every-
where, it is easy to obtain by the same generalisa-
tion method these approximations for the case of 
anisotropic particles, as well as for the case of ani-
sotropic composites (if such particles are fractional-
ly or completely ordered).

Macroscopic averaging method uses a direct 
averaging D(r) and E(r) over volume with the ε* 
determination (1). An advantage of this approach 

is more obvious description of the accepted appro-
ximations, which allows estimating at least quali-
tatively, conditions of applicability of final results. 
Let’s turn our attention to it in more detail based 
on our work [35].

Let’s consider the general case of medium with 
random (generally non-uniform) impregnations 
(cermet), divide the whole considered volume V 
into two parts, V = V0 + V1 so that V0 corresponds 

to points of matrix r, and that 1
1

N

i
i

V v
=

= ∑  corresponds 

to points of particles with volumes vi.
Dividing the full integral when averaging over 

volume V into sum of integrals by partial volumes, 
it is easy to obtain in accordance with (1):

0

0

0 1*

0 1

( ) ( ) ( ) ( )( )
( ) ( ) ( )

v pv

v v p

f f

f f

ε ε
ε

+
= =

+

r E r r E rD r
E r E r E r

. (11)

Here fi = Vi/V is the matrix material volume frac-
tion (i = 0), or particles fraction (i = 1), f0 + f1 = 1, 
(substantiation of formal operation of division by 
vector (9) can be found in [35]). Brackets with in-
dex p mean averaging with respect to particle en-
semble of the following type:

1
i

N

ip v
i

P
=

≡ ∑  , (12)

and Pi = vi/V1 is ratio of i particle within volume of 
all particles, which can be interpreted as a conven-

tional probability “to meet” this particle among all 

particles, so 
1

1
N

i
i

P
=

=∑ .

Relation (11) is exact formally, if to consider 
distributions of ε(r) and of E(r) field in the compo-
site as known. Though at present, computing abili-
ties allow carrying out computer simulations with 

Fig. 3. Equivalent scatterer method



Light & Engineering  Vol. 27, No. 1

10

simultaneous estimation of E(r) and of applicabil-
ity of different models [36], in most of practical si-
tuations, these distributions can be considered as 
stochastic functions, which exact values are not re-
corded in experiments. But to obtain approxima-
tions (4) –  (6), as well as their generalizations, it is 
enough to use simple statistical hypotheses about 
particle typical configuration and on “typical va-
lues” of the field inside and out of them. Thereby 
averaging with respect to volumes of medium and 
particles is heuristically replaced with a statistical 
ave raging over volumes of some “effective cells”. 
Selecting such cells of different structures and set-
ting field distribution E(r) out and inside them, one 
can obtain different approximations for ε*.

4. MAXWELL-GARNETT 
APPROXIMATION

The main assumption necessary to obtain MG 
approximation from (11) is that particles on ave-
rage can be considered as being in the uniform ex-
ternal field. To obtain MG approximation (4) from 
(11), it is enough to consider that all particles are 
uniform, have identical dielectric permeability ε1, 
as well as identical spherical shape, and the field 
out of the particles is accepted to be equal to the 
uniform field E0 without particles. Instead we will 
at once consider generalisation (4) for a case of 
chaotically oriented elliptic particles with random 
distribution of depolarisation factors Li. The field 
within such a particle in the uniform external field 
E0 is also uniform and expressed using the known 
relation:

0in = ΛE E , (13)

where tensor Λ is expressed by means of a depo-
larisation tensor being diagonal in the ellipsoid 
main axes L = diag(L1, L2, L3) as

1

0

1

1 1L ε
ε

Λ =
 

+ −  

. (14)

Here and below we don’t add special designa-
tions for tensor values considering that their na-
ture is clear from the context. The division in (14) 
is understood as a matrix inversion, and explicit 
expressions for depolarisation factors Li are well-

known 3 and are not written here (see e.g. Sec-
tion 4 [22]; (1 in (14) is the symbol of unit matrix). 
With due regard to (13), formula (11) can be writ-
ten as

*
1

0 1

1
1

f
f L
αε

ε α
= +

−
, (15)

where

1
1 0

0 1

( )
v

αα ε ε
ε

= = − Λ  (16) 

is the tensor of specific polarizability of the ellip-
soid, and symbol of full statistical averaging   

includes both averaging with respect to orientation, 
which is limited to calculating 1/3 of tensor trace, 
and averaging with respect to random distribution of 
depolarization factors connected with the particle 
configuration. So

1Sp
3 L= Λ  , (17)

where SpΛ = Λ1+Λ2+Λ3, Λi = (1+Li ( 1

0

ε
ε

 –1))-1.

To implement averaging over L, one should 
set a model of random distribution for depolariza-
tion factors Li. For particles of identical configura-
tion with prescribed Li, averaging with respect to L 
in (17) can be omitted. We will not fix on it here 
in more detail (see, e.g., [7], section 12.2.5). A simi-
lar expression (15) can be also obtained in the event 
of partially ordered orientations of ellipsoids, when 
the composite becomes anisotropic, and ε* becomes 
tensor.

If particles have a different nature, besides with 
random dielectric permeability εi, then averaging 
over L in (17) should be added with a statistical ave-
raging over εi, which expands the class of the per-
missible composites with multi-component fillers.

The considered method to obtain MG allows at 
least a qualitative estimating applicability condi-

3 Nevertheless, there are various readings in the referenced pub-
lications: so for example, in known monograph [7] when determining 
ellipsoid depolarization factors, polarizability relative to vacuum but 
not to medium is considered, which forces to add new depolarization 
factors depending on dielectric permeability of the medium and on 
the ellipsoid besides normal depolarization factors named in [7] as 
geometrical factors.
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tions for this approximation. Indeed, each particle 
is considered on average as distant enough from its 
neighbours, and this requires a smallness of the ef-
fects connected with fields scattered by particles, 
as well as with “adhesion” of particles. This pla-
ces upper limit for particle relative volume f1 (so as 
such limitation, condition f1 < 0.4 is considered 
in [37]).

Applications of MG approximation are extreme-
ly broad. It should be noticed as examples only, in-
teresting evaluations of composites with refractive 
indices both high [38], and close to zero [39], as 
well as antiglare optical composite coatings [40].

As in the event of dielectric matrices in MG ap-
proximation, each particle is considered to be sur-
rounded with non-conducting dielectric, for metal 
(well conducting) particles, this approximation al-
lows describing the so-called conductivity resonance 
connected with electron movement limitation by 
particle volume [41]. One can find a more detailed 
discussion of this question for example in [37]. 
From the other side, for the same reason MG ap-
proximation does not describe emergence of per-
colation threshold (or otherwise, percolation phe-
nomenon [42]), because it excludes a possibility of 
particle contact. This phenomenon consists in emer-
gence a dielectric-metal junction in the specified 
composite with increase of the conducting phase 
concentration f1 not beginning from f1 = 0 but after 
some threshold value f1с is only achieved [42]. This 
disadvantage can be eliminated in the self-coordi-
nated Bruggeman approximation, which even in the 
elementary form (5) allows qualitative describing 
emergence of percolation threshold.

5. BRUGGEMAN APPROXIMATION 
IN MODELS OF ELLIPTIC CELLS

To obtain this approximation from (11), it is 
enough to accept the following “effective cells” mo-
del: effective cells are ellipsoids filled with the cor-
respondent material (with ε0 for environment points 
and with ε1 for particles). The self-coordination con-
dition consists in that each such cell is considered 
to be placed into an “effective medium” with dielec-
tric permeability ε*, in which field is regarded as 
uniform and equal to an average field E  (Fig. 4). 

In an elementary model leading to (5), instead of el-
lipsoids a sphere is used, for which L1 = L2 = 
L3 =1/3.

Now let’s consider a more general model of cha-
otically oriented ellipsoids, for which medium is 
statistically isotropic with scalar effective dielec-
tric permeability ε*. In this approximation, the field 
both in medium points, and in particles is expressed 
using relation (13), where an average field E  ap-
pears as an external field E0, and tensor correspond-
ing to ellipsoids Λ is presented as expression (14) 
with different depolarization tensors L(0) for medi-
um points and L(1) for particles (we will further de-
signate these tensors as Λ(i)). In this model of “ef-
fective cells”, configuration of ellipsoids for particle 
and medium points can be various and generally 
this configuration is random.

Taking into account this difference allows first 
introducing additional free parameters into the mo-
del and secondly, corresponds to physical intuition. 
Indeed, “particle cell” structure is determined by 
choice of their typical configuration, whereas “me-
dium cell” configuration is connected with particle 
relative positions. Taking into consideration the all 
said and using (11), after simple transformations we 
obtain the following:

f0< 0( 1)
*
ε
ε

−
(0)

(0) 0

1 L

1 L ( 1)
*
ε
ε

−

+ −
> + f1 < 1( 1)

*
ε
ε

− ×

(1)

(1) 1

1 L

1 L ( 1)
*
ε
ε

−×
+ −

> = 0 . (18)

Here statistical averaging is still understood as 
(17), and if necessary it can be added with averag-
ing over random dielectric permeability ensuring 
description of multi-component fillers.

If as an initial approximation, expression (6) is 
accepted, then after setting different depolariza-
tion factors for environment and for particles, after 
averaging we have:

f0< 0( 1)
*
ε
ε

−
(0) 0

1

1 L ( 1)
*
ε
ε

+ −
> + f1< 1( 1)

*
ε
ε

− ×

(1) 1

1

1 L ( 1)
*
ε
ε

×
+ −

>= 0.  (19)
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Such configuration of EMA (Effective medium 
approximation) was widely used in different works 
(see, e.g., [43, 44])

Equation (18) differs from (19) by presence of 
multiplier factors 1-L(i) in each summand nume-
rator. For identical and mono-directed ellipsoids, 
these common multiplier factors can be omitted, so 
(18) and (19) are transformed into (6), however ge-
nerally such simplification does not happen. Thus 
(18) and (19) correspond to different models of ef-
fective medium.

6. GENERALIZED BRUGGEMAN 
APPROXIMATION AND PERCOLATION 
THRESHOLD

Equations (18) and (19) are generally rather 
complex and can be solved numerically. In this re-
gard, the known problem of choice of a “correct” 
branch of the EMA equation solution, which gene-
rally is many-valued, should be noticed [45]). How-
ever, without solving these equations, one can at 
once find expressions from them for correspondent 
percolation thresholds. With that end in view, we 
will pass from consideration of dielectric permea-
bility ε to conductivity σ, for which all relations are 
retained in quasistatic approximation as it was spe-
cified above. To find percolation threshold, we will 
consider the case of dielectric matrix σ0 = 0 with 
conducting particles σ1 ≠ 0. Having replaced ε with 
σ everywhere and considering in (18) and (19) first 
σ0 = 0, and then σ* = 0 (order of these substitutions 
is important!), it is easy to obtain the following ex-
pressions for threshold value of volume particles 
part. In case of (18):

1 (1)
11cf

L
= , (18)

and in case of (19):

*
1 (1)

(0)

1
1

1
1 (1 )

cf
L

L

=
+

−

. (19)

We will not further discuss these expressions, 
which for the model of spherical cells are both re-
duced to the well-known evaluation for the Brug-
geman approximations f1с = 1/3 (5). For an illus-
tration, we are limited to comparison of MG and 
EMA approximations in simplest models (4) and 
(5). Fig. 5 shows effective dependences of conduc-
tivity σ* in these models on volume part of conduc-
ting component for different relations σ0/σ1. One can 
see from these figures that MG approximation (4) 
gives dependence σ* converging in limit σ0/σ1→ 0 
to a discontinuous function σ* = 0 at 0 ≤ f1 <1 and 
σ* = 1 at f1 = 1, which corresponds to absence of the 
percolation threshold, whereas for EMA in this limit 
there are two sections of right lines with threshold 
value f1c = 1/3 (Fig. 5).

7. CONCLUSIONS

In this review, we have briefly considered va-
rious methodical approaches to obtain MGA and 
EMA as most widespread homogenisation appro-
ximations, i.e. to replace a strongly non-uniform 
composite with a homogeneous medium so that 
to save invariable the measured averaged elec-
tro-dynamic characteristics of the composite. Such 
a procedure even for composites with non-uniform-
ities being small in comparison with the wave-
length, is feasible not always and practically leads 
to neglect of possible strong small-scale field fluc-
tuations in the composite. Due to a big variety of 

Fig. 4. Effective cell in approximation of the self-consisted 
Bruggeman field: ellipsoid in effective  

medium with ε*

Fig. 5. Dependences of effective conductivity on filling fac-
tor f1 in approximations MG (4) and EMA (5);

– –  –σ2/σ1= 0,1; –  - -σ 2/ σ 1 = 0,05; ––– σ2/σ1 → 0
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composite inner structures, one cannot expect a cre-
ation of formulas for effective medium parame-
ters suitable in all cases, and this explains presence 
of many various models in the publications. Ne-
vertheless, MGA, EMA and their generalisations re-
main basic approximations when describing many 
nano-composite media. In this review, we have not 
touched on many questions connected with taking 
into account in MGA and EMA various complicat-
ing factors, which description can be found in the 
quoted references.

At present, a rapid development of nano-pho-
tonics continues, and homogenisation theory occu-
pies a useful niche in this development, which often 
allows obtaining uncommon results using simple 
facilities.
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