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ABSTRACT

The symmetric Bruggeman approximation, also 
known as the Effective Medium Approximation 
(EMA), is widely used in applications including 
the description of light scattering on inhomoge-
neous structures containing discrete inclusions. 
However, in the latter case, the natural asymme-
try of the fillers topology, where discrete inclusions 
are mostly surrounded by the material of a simply 
connected matrix, is not taken into account. In this 
paper, two versions of asymmetric EMA are pro-
posed for the case of a statistically isotropic me-
dium containing discrete inclusions based on the 
difference in the structure of the fields inside and 
outside the inclusions. One of them does not dif-
fer too much from the usual EMA and leads to the 
same percolation threshold. For the second, the 
threshold value differs from the usual one even in 
the case of spherical particles. Expressions are giv-
en for the corresponding percolation thresholds in 
the model of randomly oriented elliptical particles. 
The proposed approximations are compared with 
the standard Maxwell Garnett and Bruggeman ap-
proximations for the case of silver particles in a di-
electric matrix.
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1. INTRODUCTION

In describing the optical characteristics of mac-
roscopically inhomogeneous media, both natural 
and artificial, various “mixing rules” are widely 
used, which make it possible to approximately re-
place a real small-scale compared to a wavelength 
randomly inhomogeneous medium with a homo-
geneous one with some effective parameters (see, 
for example, the review [1] and the literature cit-
ed there).

Of the large number of known models for cal-
culating effective parameters, the Maxwell-Garnett 
approximation (MGA) and the Bruggeman effective 
medium approximation (EMA) are distinguished. 
The first of them is constructed for a model of a ho-
mogeneous medium with random inclusions, and 
the second considers a symmetric composite com-
pletely filled by randomly distributed particles with 
different macroscopic characteristics. In this case, 
the MGA is an asymmetric approximation in which 
one of the components is selected and plays the role 
of a matrix. As a result, the MGA, unlike the sym-
metric EMA, does not allow to describe the perco-
lation threshold associated with the occurrence of 
“sticking together” of random inclusions in an in-
finite cluster upon an increase of their concentra-
tion, which is considered to be a drawback of this 
approximation. At low concentrations of inhomo-
geneities far from the threshold, both approxima-
tions give identical results. In this paper, we obtain 
simple asymmetric EMA modifications based on 
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a model of a homogeneous medium with random 
scatterer, and at the same time allowing us to de-
scribe the occurrence of a percolation threshold.

2. DERIVATION OF ASYMMETRIC EMA 
EQUATIONS

Consider a homogeneous medium with a per-
mittivity ε0 containing statistically uniformly dis-
tributed particles with a permittivity ε1 occupying a 
volume fraction f1, so that the volume fraction of a 
particle-free medium is f0 = 1 –  f1. Considering the 
medium to be small-scale, so that the particle sizes 
and the distances between them are small compared 
to the wavelengths of the radiation in question, we 
use the quasistatic approximation. In this approxi-
mation the electrical and magnetic properties of the 
medium can be described independently. For the 
case of a homogeneous external field Eout = const 
created by sources outside the medium (a strict set-
ting of the boundary conditions can be found in [2]), 
the effective permittivity ε* can be determined by 
the relation [1]

ε* = < ε E >v / <E> v = 
= (f0 < ε0 E0 > + f1 < ε1 E1 >) / < E >, (1)

< E > = f0 < E0 > + f 1 < E1 >. (2)

Here angle brackets with index V mean averag-
ing over “physically infinitesimal volume”, small 
compared to the total volume of the medium, but 
containing a large number of particles,

1
v

V

dr
V

= ∫ , (3)

and the same brackets without an index are statis-
tical averaging, which includes averaging over the 
volumes of each component (for simplicity, we do 
not introduce special notation for vector quantities).

The fields E0 and E1 included in (1) can be con-
sidered, respectively, as fluctuating fields outside 
and inside the “characteristic particle”. All further 
approximations are associated with statistical hy-
potheses about the properties of these fields. For 
simplicity, here we restrict ourselves to the case of 
spherical particles (a generalization to the ellipsoid 
model can be easily obtained taking into account 
the results of [3]). In the simplest approximation, 
valid in the limit of highly rarefied media (formally 
f1à0), the field outside the particles E0 is assumed 

to be equal to the field in their absence, E0 = Eоut, 
thereby completely neglecting the effect of scatter-
ing on E0. In this case, the field inside the character-
istic particle will be expressed through the external 
field E0 by the known relation [4]

E1 = Λ10 E0, Λ10 =  0

1 0

3
2
ε

ε ε+
. (4)

In this approximation, the angle brackets on the 
right side of (1) can be omitted, which after reduc-
ing by E0 gives the usual MGA

ε* = (f0 ε0 + f1 ε1 Λ10) / (f0 + f 1 Λ10). (5)

The use of EMA is associated with an attempt 
to take into account the mutual influence of scatter-
ing by particles, self-consistently considering as a 
“characteristic particle” a spherical particle located 
in a uniform average field < E > in an “effective me-
dium” with a dielectric constant ε*. Wherein

E1 = Λ1* < E >, Λ1* = 
1

3 *
2 *
ε

ε ε+
. (6)

In the usual Bruggeman approximation [5], it is 
assumed that in (1) in estimating the field outside 
the particles E0, similar ratios should be used, i.e.

E0 = Λ0* < E >, Λ0* =
0

3 *
2 *
ε

ε ε+
, (7)

leading to a well-known relation

0 1
0 1

0 1

* * 0
2 * 2 *

f fε ε ε ε
ε ε ε ε

− −+ =
+ +

. (8)

Conditions (7) correspond to the aggregate to-
pology, i.e. the case when the component with ε0 
consists of spherical particles. However, for the 
asymmetric case considered here with a distin-
guished medium and discrete inclusions, there is no 
reason to use (7) for the field between the particles, 
since the array of the medium has no direct connec-
tion with the spherical shape of the particles.

Within the framework of the self-consistent ap-
proximation, it suffices to assume that the field out-
side the particles E0 is approximately equal to the 
average field, i.e. having kept (6) for particles, in-
stead of (7) for the medium field, put in (1) E0 = < 
E >. Substituting this relation and (6) into (1), af-
ter simple transformations, instead of (8), we obtain

1 0
1 0

1

* * 0
2 * 2 *

f fε ε ε ε
ε ε ε

− −+ =
+

. (9)
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A more reasonable approximation than (9), “in-
termediate” between EMA and MGA, is obtained 
when calculating the field inside the “effective par-
ticle” as an external field with respect to the parti-
cle if instead of the total average field <E> the aver-
age field between the particles <E0> is taken. Then 
(1) and (2) give

ε* = (f0 ε0 + f1 ε1 Λ1*) / (f0 + f 1 Λ1*). (10)

This relation coincides in form with MGA (5), 
however, taking into account (6), it does not repre-
sent an explicit expression, but the equation for ε*, 
which can be easily reduced to a form similar to (9)

1 0
1 0

1

* * 0
2 * 3 *

f fε ε ε ε
ε ε ε

− −+ =
+

. (11)

In the next section, we compare some properties 
of the approximations considered here.

3. SOME CONSEQUENCES

All the approximations described in the previ-
ous section admit a formal transition to the case of 
complete filling of the medium with particles. f1 = 1 
when ε* = ε1. These approximations are valid in the 
general case of complex permittivities. The same 
expressions are preserved during the transition from 
the dielectric constant ε to the description of the 
medium conductivity σ, as well as when describing 
many other kinetic coefficients (see [6]).

It is easy to show (see [1]) that all forms of 
EMA (8) –  (10) describe the occurrence of a per-
colation threshold. However, if approximation (9), 
like the usual Bruggeman approximation (8), gives 
the percolation threshold f1с = 1/3, then equation 

(11) already has a different threshold value, name-
ly f1с = 1/4.

All approximations (8) –  (10) lead to quadrat-
ic equations with respect to ε*, which are easily 
solved. To illustrate, Fig. 1 shows the dependences 
of the effective conductivities of a weakly conduct-
ing medium with conducting particles in models 
(8) –  (10). It can be seen from this figure that mod-
el (9) with a threshold f1с = 1/3 gives a result that is 
qualitatively close to the usual Bruggeman model 
(8), while model (10) is noticeably different from 
(8) due to differences in the percolation thresholds.

As another example consider the case of silver 
nanoparticles in a matrix with refractive index n = 
1.5. Fig. 2 shows the behaviour of real and imagi-
nary parts of the complex refractive index N = ε  
for the volume silver according to the data taken 

Fig. 1. Effective conductivity for a medium with conductiv-
ity σ0 and particles with conductivity σ1 at σ0/σ1 = 0.01 in 
models (8) –  – –, (9) –  ‑ –  and (10) ▬. The dots indicate 
the limiting values of these curves for a none-conducting 

medium σ 0 = 0

f1  

Fig. 2. The real and 
imaginary parts of the 
refractive index N = 
N’ + iN’’ (a) bulk Ag 
according to [7], and 
(b) effective refractive 
index in models MGA 
(5) and EMA (8) –  (10) 
with f1 = 0.1
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from [7], as well as for the effective refractive index 
N* = *ε  for a medium with silver nanoparticles in 
the MGA (5) and EMA (8) –  (10) with filling

f1 = 0,1. It can be seen from these figures that all 
the considered models of the effective medium in 
this example noticeably differ from the MGA, and 
give qualitatively similar, but quantitatively differ-
ent results. Moreover, if MGA describes the pres-
ence of a narrow plasmon resonance, then all EMA 
schemes give a broadened resonance with a maxi-
mum shifted to the red side (“red shift”). 

4. DISCUSSION

The examples considered above show that the 
proposed modifications give results that are qual-
itatively similar to the usual EMA with noticeable 
quantitative differences. It is not difficult to gener-
alize these approximations to the case of random-
ly oriented elliptic particles. To do this, it suffices 
to replace the quantities Λ1* and Λ10 by correspond-
ing tensor expressions, supplementing the averag-
ing symbols in (1) by averaging over random ori-
entations, which reduces to calculating one third of 
the trace of the matrix [1]. Moreover, in the case of 
ellipsoids with a depolarization tensor L for model 
(10) the percolation threshold is equal to

f1c = 1/ (1+ < 1
L

>), (12)

and for the model (9)

f1c = 1/< 1
L

>, (13)

where

< 1
L

> = 1
3

Sp 1
L

, (14)

and the division by L is understood in the sense of 
matrix inversion. Expression (13) is also obtained 
by using a direct generalization of the standard form 
EMA (8) to the case of elliptic cells, if we only ac-
cept, as is usually done, that the points of the medi-
um correspond to spherical cells. This expression is 
also preserved for models with fluctuating depolar-
ization factors L, for which it is sufficient to supple-
ment the right-hand side of (14) with statistical av-
eraging over L.

When using effective parameters in applica-
tions, the question naturally arises about the condi-
tions of applicability of certain models. Necessary 

conditions are the applicability of the quasistatic 
approximation. However, sufficient conditions can-
not be indicated in the general case, since in real 
problems the particles are not strictly randomly 
distributed and can also have some complex inter-
nal structure, for which the statistical models under 
consideration can serve only as a rough approxi-
mation (a useful discussion of the lack of univer-
sal effective parameters for macroscopically inho-
mogeneous media can be found in [8]). Therefore, 
the choice of a particular model is usually justified 
only by comparing their results with specific real 
or numerical experiments. As the last example, we 
can mention the work [9], in which the classical 
EMA (8) is compared with the results of numeri-
cal calculations

5. CONCLUSION

In this note we have considered two variants of 
EMA for the case of a medium with discrete inclu-
sions, which take into account the difference be-
tween the simply connected matrix topology and 
the topology of single particles. One of them does 
not differ much from the commonly used symmetric 
Bruggeman approximation and gives the same flow 
threshold f1 = 1/3, while for the second this differ-
ence is more significant and corresponds to a lower 
threshold value f1 = 1/4. Both approximations can 
be easily generalized to the case of randomly ori-
ented elliptic particles. It can be expected that using 
these approximations will find useful applications in 
practical applications.
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