Content
Number of images - 5
Tables and charts - 1
Selection and Justification of Optimal Spectral Wavelengths for Control of Methane Emission from an Advanced Nanosatellite L&E, Vol.31, No.5, 2023

Light & Engineering 31 (5)

Volume 31
Date of publication 10/10/2023
Pages 143–152

Purchase PDF - ₽450

Selection and Justification of Optimal Spectral Wavelengths for Control of Methane Emission from an Advanced Nanosatellite L&E, Vol.31, No.5, 2023
Articles authors:
Valery E. Karasik, Mikhail L. Belov, Ilya V. Zhivotovsky, Alexei A. Sakharov

Valery E. Karasik, Doctor of Technical Sciences, Professor. He graduated in 1963 from Bauman Moscow State Technical University. Currently, he is a Professor of Bauman Moscow State Technical University. His research interests are optical and optoelectronic devices and systems

Mikhail L. Belov, Doctor of Technical Sciences, Professor. He graduated in 1973 from Bauman Moscow State Technical University. At present, he is the Professor at the same university and member of Editorial Board of the journal Light & Engineering Journal. His research interests are optical and optoelectronic devices and systems

Ilya V. Zhivotovsky, Ph. D. in Tech. Sc. He graduated in 2000 from Bauman Moscow State Technical University. At present, he is an Associate Professor at Bauman Moscow State Technical University. His research interests: laser location devices and systems

Alexei A. Sakharov, engineer. In 1992, he graduated from Bauman Moscow State Technical University where at present he is leading engineer. His research interests: optical and optoelectronic devices and systems

Abstract:
The choice and justification of optimal wavelengths of spectral radiance density registration for the task of monitoring methane emissions in the atmosphere from the orbit of an artificial satellite by a passive optical sensor in the spectral region near 1.65 μm have been performed. Mathematical modelling of the spectra recorded by the optical sensor for tropical and subarctic atmospheric models of the Earth’s atmosphere, different widths of the spectral function of the acousto-optic spectrometer, and different solar zenith angle were performed. It is assumed that methane emissions in the Earth’s atmosphere will be monitored from a promising nanosatellite (weighing less than 6 kg) using an acousto-optic spectrometer, which uses two narrow (0.1 nm and 0.5 nm) wavelengths of radiation registration to implement a differential method of absorption spectroscopy based on acousto-optic filtering. A criterion for selecting optimal wavelengths for monitoring the integral methane content in the atmosphere from the orbit of the artificial satellite is proposed. The values of the central wavelengths of optimal wavelengths for recording the energy brightness of scattered radiation for the width of the spectral function of the acousto-optic spectrometer in range (0.0, 0.1, 0.2 and 0.5) nm have been obtained. It is shown that the choice of the optimal pair of wavelengths is determined by the width of the spectral function of the sensor, depends insignificantly on the model of the Earth’s atmosphere (tropical or subarctic model) and does not depend on the solar zenith angle in range (0–80) angular degree.
References:
1. Suto, H., Kataoka, F., Kikuchi, N., Knuteson, R.O., Butz, A., Haun, M., Buijs, H., Shiomi, K., Imaiand, H., Kuze, A. Thermal and near-infrared sensor for carbon observation Fourier transform spectrometer‑2 (TANSOFTS‑2) on the Greenhouse gases Observing SATellite‑2 (GOSAT‑2) during its first year in orbit // Atmos. Meas. Tech. 2021, Vol. 14, pp. 2013–2039.
2. Nakajima, M., Suto, H., Yotsumoto, K., Shiomi, K., Hirabayashi, T. Fourier transform spectrometer on GOSAT and GOSAT‑2 // Proceedings of SPIE, 2017, 1056340, pp. 1–9.
3. Hu, H., Landgraf, J., Detmers, R., Borsdorff, T., de Brugh, J., Aben, I., Butz, A., Hasekamp, O. Toward global mapping of methane with TROPOMI: First results and inter satellite comparison to GOSAT // Geophys. Res. Lett. 2018, Vol. 45, pp. 3682–3689.
4. Veefkind, J.P., Aben, I., McMullan, K., Förster, H., De Vries, J., Otter, G., Claas, J., Eskes, H.J., De Haan, J.F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H., Levelt, P.F. TROPOMI on the ESA Sentinel‑5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications // Remote Sens. Environ. 2012, Vol. 120, pp. 70–83.
5. Clerbaux, C., Boynard, A., Clarisse, L., George, M., Hadji-Lazaro, J., Herbin, H., Hurtmans, D., Pommier, M., Razavi, A., Turquety, S., Wespes, C., Coheur, P.F. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder // Atmos. Chem. Phys. 2009, Vol. 9, pp. 6041–6054.
6. Crisp, D., Pollock, H. R., Rosenberg, R., Chapsky, L., Lee, R.A.M., Oyafuso, F.A., Frankenberg, C., O’Dell, C.W., Bruegge, C., Doran, G.B., Eldering, A., Fisher, B.M., Fu, D., Gunson, M.R., Mandrake, L., Osterman, G.B., Schwandner, F.M., Sun, K., Taylor, T.E., Wennberg, P.O., Wunch, D. The on-orbit performance of the Orbiting Carbon Observatory‑2 (OCO‑2) instrument and its radiometrically calibrated products // Atmos. Meas. Tech. 2017, Vol. 10, pp. 59–81.
7. TanSat. URL: https://www.eoportal.org/satellitemissions/tansat (date of addressing 08.12.2022).
8. Boesch, H., Liu Y., Tamminen, J., Yang, D., Palmer, P.I., Lindqvist, H., Cai Z., Che, K., Di Noia, A., Feng, L. et al. Monitoring Greenhouse Gases from Space // Remote Sens. 2021, Vol. 13, # 2700, pp. 1–25.
9. Jervis, D., McKeever, J., Durak, B.O.A., Sloan, J.J., Gains, D., Varon, D.J., Ramier, A., Strupler, M., Tarrant, E. The GHGSat-D imaging spectrometer // Atmos. Meas. Tech. 2021, Vol. 14, pp. 2127–2140.
10. Varon, D.J., Jacob, D.J., Jervis, D., McKeever, J. Quantifying time-averaged methane emissions from individual coal mine vents with GHGSat-D satellite observations // Environ. Sci. Technol. 2020, Vol. 54, pp. 10246–10253.
11. Korablev, O., Bertaux, J.-L., Fedorova, A., Fonteyn, D., Stepanov, A., Kalinnikov, Y., Kiselev, A., Grigoriev, A., Jegoulev, V., Perrier, S., Dimarellis, E., Dubois, J. P., Reberac, A., Van Ransbeeck, E., Gondet, B., Montmessin, F., Rodin, A. SPICAM IR acousto-optic spectrometer experiment on Mars Express // Journal of geophysical research, 2006, Vol. 111, E09S03, pp. 1–17.
12. Pozhar, V. E., Machikhin, A. S., Gaponov, M. I., Shirokov, S. V., Mazur, M. M., Sheryshev, A.E. Hyper spectrometer based on an acousto-optic tunable filter for UAVS // Light & Engineering, 2019, Vol. 27, # 3, pp. 99–104.
13. Katayev, M. Yu., Lukyanov, A.K. Simulation of Reflected Solar Radiation for Atmosphere Gas Composition Evaluation for Optical Remote Sensing From Space // Light & Engineering, 2018, # 3, pp. 14–21.
14. Vasilev, A.V., Kuznetsov, A.D., Melnikova, I.N. Approximation of multiply scattered solar radiation in the framework of a single scattering [Approksimatsiya mnogokratno rasseyannogo solnechnogo izlucheniya v ramkakh priblizheniya odnokratnogo rasseyaniya] // [Uchonyye zapiski RGGM] Proceedings of the Russian State Hydro-meteorological University, 2016, # 3, pp. 94–103.
15. Scattering and absorbing atmospheres: standard computational procedures / Edited by J. Lenoble, Hampton, Virginia, USA: A. DEEPAK Publishing, 1985, 260 p.
16. Lisenko, S.A. Atmospheric correction of multispectral satellite images based on the solar radiation transfer approximation model // Atmospheric and Oceanic Optics, 2018, Vol. 31, # 1, pp. 72–85.
17. Kuntz, M., Höpfner, M. Efficient line-by-line calculation of absorption coefficients // J. Quant. Spectrosc. Radiat. Transf. 1999, Vol. 63, # 1, pp. 97–114.
18. Gordon, I.E. et al. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectroscopic Radiation. Transf. 2022, Vol. 277, 107949, pp. 1–81.
19. Anderson, G. et al. Atmospheric Constituent Profiles (0–120km) // Environmental research papers, 1986, AFGL-TR‑86–0110, # 954, pp. 1–43.
20. Jacob, D.J. et al. Satellite observations of atmospheric methane and their value for quantifying methane emissions // Atmos. Chem. Phys. 2016, Vol. 16, # 22, pp. 14371–14396.
Keywords

Buy

Recommended articles
https://db2.iaesprime.com/https://db.iaesprime.com/https://ojs.nbu.edu.sa/files/sigmaslot/https://www.teknika-ftiba.info/teknika/sigma/https://www.teknika-ftiba.info/jurnal/mpo/https://www.teknika-ftiba.info/ojs/pasarantogel2/https://www.unjc.cu/depo10k/https://untref.edu.ar/uploads/demo/gates-of-olympus/https://untref.edu.ar/uploads/demo/sweet-bonanza/https://fjot.anfe.fr/https://tokorumput.com/wp-content/slot-depo-10k/https://classyfm.co.id/frontend/sigmaslot/https://nrais.dgda.gov.bd/public/pasarantogel2https://revistas.unap.edu.pe/demo-slot-zeus-vs-hades/https://revistas.unap.edu.pe/slot-kamboja-bet-100/https://jltl.com.tr/zeus-slot/https://mediapencerahanbangsa.co.id/https://optimum.uwb.edu.pl/docs/mpo/https://newhealthconcept.net/wp-includes/demo-slot-zeus-vs-hades/https://sijms.szabist-isb.edu.pk/wp-includes/pasarantogel2/https://journals.asmarya.edu.ly/pasarantogel2/https://pdamindramayu.co.id/images/luar/https://pdamindramayu.co.id/demo/https://learning.modernland.co.id/git/slot-depo-10k/https://newhealthconcept.net/wp-content/akun-pro-kamboja/https://bundamediagrup.co.id/zeus/https://bundamediagrup.co.id/luar-negeri/https://bundamediagrup.co.id/maxwin-pragmatic/https://bundamediagrup.co.id/khmer/slot/https://khnnra.edu.ua/wp-includes/demo-slot-zeus-vs-hades/https://khnnra.edu.ua/wp-content/akun-pro-platinum/https://vtik.net/slot-kamboja/index.phphttps://aihc.amexihc.org/toto/http://himatikauny.org/wp-includes/zeus/https://iedi.edu.br/wp-includes/slot-kamboja-bet-100/https://iedi.edu.br/wp-content/bandito/https://www.unjc.cu/starlight-princess/https://www.unjc.cu/demo-slot-zeus-vs-hades/https://cstvcnmt.gialai.gov.vn/demo/https://sedimentologia.org.ar/slot-depo-10k/https://conference.vestnik-vsuet.ru/https://bundamediagrup.co.id/wp-includes/mpo/https://bundamediagrup.co.id/wp-includes/sv388/http://himatikauny.org/wp-includes/akun-pro-platinum/https://procesolocal2024.ieebcs.org.mx/vendor/zeus-vs-hades-demo/http://himatikauny.org/wp-content/slot-kamboja-bet-100/https://procesolocal2024.ieebcs.org.mx/js/https://journal.dntb.gov.ua/slot-depo-10k/https://fjot.anfe.fr/js/https://blog.indoamerica.edu.ec/wp-includes/slot-kamboja-bet-100/https://investigacion.indoamerica.edu.ec/wp-content/wild-bandito/https://portalderevistas.uam.edu.ni/public/zeus-vs-hades/https://portalderevistas.uam.edu.ni/public/pasarantogel2/https://perhepi.org/fae/akun-pro-jepang/https://ejournal.aibpmjournals.com/gates-of-olympus/https://ucardioj.com.ua/classes/https://ois.unsa.ba/wild-bandito/https://journals.qmu.ac.uk/controllers/https://journals.qmu.ac.uk/classes/https://ucardioj.com.ua/slot-depo-10k/https://journals.qmu.ac.uk/sv388/https://journals.qmu.ac.uk/api/depo-10k/https://ois.unsa.ba/slot-deposit-pulsa/http://103.165.243.97/doc/git/https://www.chiesadellarte.org/https://www.rollingcarbon.org/https://www.savebugomaforest.org/https://www.sigmaslot-profil.com/https://www.doxycycline365.com/https://thailottonew.site/https://hipnose.in/https://tennishope.orghttps://serenityprime.net/https://revista.farol.edu.br/uploads/pt2/https://civitic.indoamerica.edu.ec/wp-includes/pasarantogel2/https://journals.uol.edu.pk/classes/pasarantogel2/http://snabm.unim.ac.id/api/http://snabm.unim.ac.id/classes/slot-luar-negeri/http://103.165.243.97/doc/unsign/akun-pro-platinum/http://103.165.243.97/doc/word/mposlot/https://352spb.edusite.ru/slot-depo-10k/https://bundamediagrup.co.id/depo10k/https://loa.tsipil-uii.ac.id/sg-gacor/http://snabm.unim.ac.id/depo-10k/http://snabm.unim.ac.id/lib/slot-maxwin/http://103.165.243.97/doc/luar-negeri/http://103.165.243.97/doc/sign/slot-thailand/http://103.165.243.97/doc/before_tte/zeus-slot/https://appv2.tanahlautkab.go.id/doc/mpo/https://www.chuka.ac.ke/gates-of-olympus-1000/http://103.165.243.97/doc/kamboja/http://mysimpeg.gowakab.go.id/mysimpeg/bangkomplit/http://mysimpeg.gowakab.go.id/toto/http://mysimpeg.gowakab.go.id/mysimpeg/maxwin/https://jurnal.jsa.ikippgriptk.ac.id/public/luar/https://www.unjc.cu/sweet-bonanza/http://103.165.243.97/doc/dana/