Content
Number of images - 6
Tables and charts - 0
High-Power AlGaInN LED Emitter for Solid-State Lasers Pumping L&E, Vol.31, No.6, 2023

Light & Engineering 31 (6)

Volume 31
Date of publication 12/13/2023
Pages 50–56

Purchase PDF - ₽450

High-Power AlGaInN LED Emitter for Solid-State Lasers Pumping L&E, Vol.31, No.6, 2023
Articles authors:
Andrey V. Aladov, Alexander L. Zakgeim, Anton E. Ivanov, Anton E. Chernyakov

Andrey V. Aladov, Ph. D. of Technical Sciences. He graduated from the Faculty of Physics of the Belarusian State University in 1981. At present, he is a Senior Researcher at Federal State Budgetary Institution Scientific and Technological Centre for Microelectronics and Submicron Hetero-structures of the Russian Academy of Sciences

Alexander L. Zakgeim, Ph. D. of Technical Sciences. In 1972, he graduated from the Leningrad Electro-technical Institute named after V.I. Ulyanov (Lenin). At present, he is a Scientific Secretary, Head of Laboratory at Scientific and Technological Centre for Microelectronics and Submicron Hetero-structures of the Russian Academy of Sciences

Anton E. Ivanov graduated in 2022 from the St. Petersburg State Electro-technical University “LETI” named after V.I. Ulyanov (Lenin). At present, he is research intern at the Scientific and Technological Centre for Microelectronics and Submicron Hetero-structures of the Russian Academy of Sciences

Anton E. Chernyakov, Ph. D. of Physics and Mathematics Sciences. He graduated in 2006 from the St. Petersburg State Electro-technical University “LETI” named after V.I. Ulyanov (Lenin). At present, he is a Senior Researcher at Federal State Budgetary Institution Scientific and Technological Centre for Microelectronics and Submicron Hetero-structures of the Russian Academy of Sciences

Abstract:
The work is devoted to the creation and study of high-power AlGaInN LED source with emission wavelengths (460–480) nm for pumping of solid-state lasers. The electrical, spectral, power and thermal characteristics were studied in a wide range of currents, continuous and pulsed modes. The design of LED matrices, which provides a tight “packing” of LEDs, their electrical commutation, efficient heat removal and a power supply for a wide pulse range has been proposed.
The developed emitter comprises the most powerful and efficient to date LE Q8W (Osram) LEDs and is intended primarily for pumping Ti:Sapphire laser, the absorption band of which is well matched with the emission spectrum of the used LEDs. The achieved optical pumping power density in the pulsed mode is ~25 W/mm2, which corresponds to the lasing threshold.
References:
1. Alferov, Zh.I., Andreev, V.M., Garbusov, D.Z., Davidyuk, N. Yu, Larionov, V.R., Pashinin, P.P., Prokhorov, A.M., Rumyantsev, V.L., Tuchkevich, V.M, Khaleev, M.M. Model of semiconductor pumping of a YAG: Nd laser based on flat LEDs in the AlAs-GaAs system [Model’ poluprovodnikovoy nakachki YAG: Nd lazera na osnove ploskikh svetodiodov v sisteme AlAs-GaAs] // Zhurnal Tekhnicheskoy Fiziki, 1997, 45(2), p. 368.
2. Farmer, G.I., Kiang, Y.C. Low‐current‐density LED‐pumpinged Nd: YAG laser using a solid cylindrical reflector // J. Appl. Phys., 1974, Vol. 45, # 3, pp. 1356–1371.
3. Zakgeim, A.L., Makushenko, Yu..M., Marahonov, V.М., Nikishin, S.A., Seysyan, R.P. Increasing the emission power of YAG-based lasers with a semiconductor pump system [Povysheniye moshchnosti izlucheniya OKG na osnove AIGs poluprovodnikovoy sistemoy nakachki] // Pisma v Zhurnal Tekhnicheskoy Fiziki, 1978, 4, (12), 699.
4. Galkin, S.L., Zalgeim, A.L., Markhonov, V.M., Nikolaev, V.М., Pavlyuk, А.А., Petrovich, I.P., Petrun’kin, V. Yu., Skadarevich, А.P., Yarzhemkovskii, V.D. Crystalline KGd (WO4)2 laser with a semiconductor pump system // Journal of Applied Spectroscopy, 1982, Vol. 37, # 2, pp. 886–888.
5. Moulton, P.F., Cederberg, J.G., Stevens, K.T., Foundos, G., Koselja, M., Preclikova, J. Optimized In-GaN-diode pumping of Ti: sapphire crystals // Optical Materials Express, 2019, Vol. 9, # 5, pp. 2131–2146.
6. Thomas, G.M., Minassian, A., Sheng, X., Damzen, M.J. Diode-pumpinged Alexandrite lasers in Q-switched and cavity-dumped Q-switched operation // Opt. Express, 2016, Vol. 24, # 24, pp. 27212–27224.
7. Piprek, J. Comparative efficiency analysis of GaNbased light-emitting diodes and laser diodes // Phys. Status Solidi, 2010, A 207, # 10, pp. 2217–2225.
8. Turnbull, G.A., Yang, Y., Shaw, P., Ruseckas, A., Samuel, I.D.W. Light-emitting diode pumped polymer lasers // Proc. of SPIE, 2008, Vol. 7051, pp. 70511E 1–11.
9. Villars, B., Steven, H., Durfee, C.G. Design and development of a high-power LED-pumped Ce: Nd: YAG laser // Optics Letters, 2015, Vol. 40, # 13, pp. 3049–3052.
10. Pichon, P., Barbet, A., Blanchot, J.P., Druon, F., Balembois, F., Georges, P. LED-pumped alexandrite laser oscillator and amplifier // Optics Letters, 2017, Vol. 5, # 10, pp. 1236–1239.
11. Pichon, P., Barbet, A., Blanchot, J.P., Druon, F., Balembois, F., Georges, P. Light-emitting diodes: a new paradigm for Ti: sapphire pumping // Optica, 2018, Vol. 42, # 20, pp. 4191–4194.
12. Taleb, H., Blanc, C.L., Thellier, E., Pichon, P., Druon, F., Balembois, F., Georges, P. LED-pumped femtosecond Cr: LiSAF regenerative amplifier system // Opt Lett., 2021, Vol. 46, # 10, pp. 2421–2424.
13. Taleb, H., Blanc, C.L., Thellier, E., Pichon, P., Druon, F., Balembois, F., Georges, P. LED-pumped Cr: LiSAF laser system operating at 100 Hz based on a multi-pass amplifier // Optics Letters, 2022, Vol. 47, # 14, pp. 3543–3546.
14. Shchekin, O.B., Epler, J.E., Trottier, T.A., Margalith, T., Steigerwald, D.A., Holcomb, M O., Martin, P S., Krames, M.R. High Performance Thin-Film Flip-Chip InGaNGaN Light-Emitting Diodes // Appl. Phys. Lett., 2006, Vol. 89, # 7, 071109 p.
15. Laubsch, A., Sabathil, M., Baur, J., Peter, M., Hahn, B. High-power and high-efficiency InGaN-based light emitters // IEEE Trans. Electron. Devices, 2010, Vol. 57, # 1, pp. 79–87.
16. Zakgeim, A.L., Aladov, A.V., Ivanov, A.E., Talnishnikh, N.A., Chernyakov, A.E. Limiting Energy Capabilities of Powerful AlInGaN LEDs // Technical Physics Letters, 2022, Vol. 48, # 4, pp. 192–195.
17.URL: www.osram.com/ecat/OSRAM%20OSTAR%C2%AE%20Projection%20Compact%20LE%20B%20Q8WP/com/en/class_pim_web_catalog_103489/prd_pim_device_2191200/
18. Zakgeim, A.L., Chernyakov, A.E. A Measuring System for Obtaining Spectroradiometric Photo-Colorimetric and Thermal Characteristics of Semiconductor Radiators // Light & Engineering, 2013, Vol. 21, # 4, pp. 64–70.
19. URL: www.mentor.com/products/mechanical/micred/t3ster/ (date of addressing: 10.03.2023)
20. McAllister, A., Bayerl, D., Kioupakis, E. Radiative and Auger recombination processes in indium nitride. // Appl. Phys. Lett., 2018, Vol. 112, # 6, 251108 p.
21. URL: standards.globalspec.com/std/1519964/JEDEC%20JESD%2051–52 (date of addressing: 10.03.2023)
22. Zakgeim, A. L., Kuryshev, G. L., Mizerov, M. N., V.G. Polovinkin, V. G., Rozhansky, I. V., Chernyakov, A. E. A Study of Thermal Processes in High Power In-GaN/GaN Flip Chip LEDs by IR Thermal Imaging Microscopy // Semiconductors, 2010, Vol. 44, # 3, pp. 373–379.
23. Chernyakov, A.E., Aladov, A.V., Zakgeim, A.L., Belov, I., Belov, V.F. Modelling of Temperature Distribution Induced by Thermo-Mechanical Deformation of High-Power AlInGaN LED Arrays // Proceedings Paper THERMINIC 2019–2019 25th International Workshop Thermal Investigations of ICs and Systems 25, 2019, 8923617 p.
Keywords

Buy

Recommended articles