Content
Number of images - 8
Tables and charts - 0
Solving the Boundary Problem of a Non-Stationary Equation Transfer of Radiation and Particles for a Semi-Infinite Medium L&E, Vol.30, No.4, 2022

Light & Engineering 30 (4)

Volume 30
Date of publication 08/10/2022
Pages 31–41

Purchase PDF - ₽450

Solving the Boundary Problem of a Non-Stationary Equation Transfer of Radiation and Particles for a Semi-Infinite Medium L&E, Vol.30, No.4, 2022
Articles authors:
Alexander V. Lubenchenko, Olga I. Lubenchenko

Alexander V. Lubenchenko, Dr. Sc., Prof. Graduated from Moscow Power Engineering Institute in 1992. Professor of Department of Nuclear Physics and Fusion of NRU MPEI

Olga I. Lubenchenko graduated from Moscow Pedagogical State University in 1997. Senior Teacher of Department of V.A. Fabrikant Physics NRU MPEI

Abstract:
The boundary problem of non-stationary radiative and particle transfer equation for a semi-infinite medium with an arbitrary single scattering law is considered. This problem comes to finding of a path length distribution function for particles in a turbid medium. A non-linear integro-differential equation for path length distribution function in the case of non-stationary multiple scattering in a semi-infinite medium with an anisotropic scattering law is found by means of invariant embedding. With the help of the discrete ordinates method, matrix non-linear differential equations are deduced that are solved by formulae of backward differentiation and matrix methods for solution of the Lyapunov equation. The computing results are verified by the Monte Carlo method for the path length distribution function for photons backscattered from a drop WC1 cloud and elastically scattered electrons backscattered from a solid semi-infinite target.
References:
1. Sobolev, V.V. Transfer of radiant energy in the atmospheres of stars and planets. Moscow: Gostekhizdat, 1956. 392 p.
2. Kolchuzhkin, A.M., Uchaykin, V.V. The Introduction to the Theory of Penetration of Particles through Matter. Moscow: Atomizdat, 1978. 256 p.
3. Matvienko, G.G. et al. Laser and Optical Sounding of the Atmosphere // Atmospheric and Oceanic Optics. 2020. Vol. 33, # 1, pp. 51–68.
4. Selishchev, S.V., Tereshchenko, S.A. Nonstationary two-flow model of radiation transfer for tomography of scattering media // Zhurnal Tekhnicheskoj Fiziki. Russian Federation, 1997. Vol. 67, # 5, pp. 61–65.
5. Tilinin, I.S., Jablonski, A., Tougaard, S. Path-length distribution of photoelectrons emitted from homogeneous noncrystalline solids: Consequences for inelastic-background analysis: 8 // Phys. Rev. B. American Physical Society, 1995. Vol. 52, # 8, pp. 5935–5946.
6. Rozenberg, G.V. The light ray (contribution to the theory of the light field) // Soviet Physics Uspekhi. IOP Publishing, 1977. Vol. 20, # 1, pp. 55–80.
7. Ambartsumyan, V. New method for calculating the scattering of light in a turbid medium // Izv. AN Arm. SSR, sir. geogr. and geophysics, 1942, Vol. 3, pp. 97–106.
8. Chandrasekhar, S. Radiactive Transfer. Oxford, 1950. 432 p.
9. Barichello, L.B., Garcia, R.D.M., Siewert, C.E. A spherical-harmonics solution for radiative-transfer problems with reflecting boundaries and internal sources // Journal of Quantitative Spectroscopy and Radiative Transfer. 1998. Vol. 60, # 2, pp. 247–260.
10. Muldashev, T.Z., Lyapustin, A.I., Sultangazin, U.M. Spherical harmonics method in the problem of radiative transfer in the atmosphere-surface system // Journal of Quantitative Spectroscopy and Radiative Transfer. 1999. Vol. 61, # 3, pp. 393–404.
11. Chalhoub, E.S. Discrete-ordinates solution for radiative-transfer problems // Journal of Quantitative Spectroscopy and Radiative Transfer. 2003. Vol. 76, # 2, pp. 193–206.
12. Afanas’ev, V. et al. Application of the Photometric Theory of the Radiance Field in the Problems of Electron Scattering // Light & Engineering. 2019, pp. 88–96.
13. Stamnes, K. et al. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media // Appl. Opt. OSA, 1988. Vol. 27, # 12, pp. 2502–2509.
14. Kolesov, A.K., Sobolev, V.V. Nonsteady Radiative Transfer in Stellar Atmospheres // Sov. Astron. 1990. Vol. 34. 179 p.
15. Minin, I. Theory of radiative transfer in planetary atmospheres. Moscow: Nauka, 1988. 264 p.
16. Machali, H.F. The solution of a time-dependent problem in radiative transfer // Astrophysics and Space Science. 1993. Vol. 208, # 1, pp. 33–39.
17. Trofimova, O.N. et al. Numerical method for solvingthe nonstationary radiation transfer equation in a layered medium // 2017 Days on Diffraction (DD). 2017, pp. 319–324.
18. Perelman, L.T. et al. Time-dependent photon migration using path integrals: 6 // Phys. Rev. E. 1995. Vol. 51, # 6, pp. 6134–6141.
19. Skocypec, R.D., Buckius, R.O. Photon path length analysis of radiative heat transfer in planar layers with arbitrary temperature distributions: 2 // Journal of Quantitative Spectroscopy and Radiative Transfer. 1986. Vol. 35, # 2, pp. 109–120.
20. Appleby, J.F., Irvine, W.M. Path-Length Distributions of Photons Diffusely Reflected from a Semi-Infinite Atmosphere // The Astrophysical Journal. 1973. Vol. 183, pp. 337–346.
21. Liemert, A., Kienle, A. Radiative transport equation for the Mittag-Leffler path length distribution // Journal of Mathematical Physics. 2017. Vol. 58, № 5. P. 053511.
22. Budak, V.P., Ilyushin, Ya.A. Development of the small angle approximation of the radiative transfer theory taking into account the photon path distribution function // Atmospheric and Oceanic Optics. 2010. Vol. 23, # 3, pp. 181–185.
23. Ilyushin, Ya.A., Budak, V.P. Analysis of the propagation of the femtosecond laser pulse in the scattering medium // Computer Physics Communications. 2011. Vol. 182, # 4, pp. 940–945.
24. Sergeeva, E.A., Korytin, A.I. Theoretical and experimental study of blurring of a femtosecond laser pulse in a turbid medium: 4 // Radiophysics and Quantum Electronics. 2008. Vol. 51, # 4. P. 301.
25. Dashen, R.F. Theory of Electron Backscattering // Phys. Rev. American Physical Society, 1964. Vol. 134, # 4A, pp. A1025–A1032.
26. Afanasev, V.P., Naujoks, D. Backscattering of Fast Electrons // physica status solidi (b). 1991. Vol. 164, # 1, pp. 133–140.
27. Matsumoto, M. The nth order time-dependent reflection function for a finite homogeneous atmosphere // Applied Mathematics and Computation. 2000. Vol. 116, # 1, pp. 61–77.
28. Schuster, A. XXII. The influence of radiation on the transmission of heat // null. Taylor & Francis, 1903. Vol. 5, # 26, pp. 243–257.
29. Schwarzschild, K. Ueber das Gleichgewicht der Sonnenatmosphäre // Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. 1906. Vol. 1906, pp. 41–53.
30. Ascher, U.M., Petzold, L.R. Computer methods for ordinary differential equations and differential-algebraic equations. Siam, 1998. Vol. 61. 314 p.
31. Barnett, S., Storey, C. Some Applications of the Lyapunov Matrix Equation // IMA Journal of Applied Mathematics. 1968. Vol. 4, # 1, pp. 33–42.
32. Sorensen D.C., Zhou Y. Direct methods for matrix Sylvester and Lyapunov equations // Journal of Applied Mathematics. Hindawi Publishing Corporation, 1900. Vol. 2003, P. 245057.
33. Benner, P., Li, J.-R., Penzl, T. Numerical solution of large-scale Lyapunov equations, Riccati equations, and linear-quadratic optimal control problems // Numerical Linear Algebra with Applications. John Wiley & Sons, Ltd, 2008. Vol. 15, # 9, pp. 755–777.
34. Benner, P. et al. SLICOT – A Subroutine Library in Systems and Control Theory // Applied and Computational Control, Signals, and Circuits: Volume 1 / ed. Datta B.N. Boston, MA: Birkhäuser Boston, 1999. pp. 499–539.
35. Deirmendjian, D. Electromagnetic scattering on spherical polydispersions. New York: Rand Corp Santa Monica CA, 1969. 165 p.
36. Salvat, F., Jablonski, A., Powell, C.J. Elsepa – Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules // Computer Physics Communications. 2005. Vol. 165, # 2, pp. 157–190.
37. Budak, V.P. et al. A fast and accurate synthetic iteration-based algorithm for numerical simulation of radiative transfer in a turbid medium: 1 // Atmospheric and Oceanic Optics. 2017. Vol. 30, # 1, pp. 70–78.
38. Carter, L.L., Cashwell, E.D. Particle-transport simulation with the Monte Carlo method: TID‑26607. Los Alamos Scientific Lab., N. Mex.(USA), 1975.
39. Lubenchenko, A. V. et al. Acceleration of Monte Carlo Simulation of Electron Transport // 2020 V International Conference on Information Technologies in Engineering Education (Inforino). 2020, pp. 1–4.
Keywords

Buy

Recommended articles
https://perijinan.blitarkota.go.id/data/situs-toto/https://perijinan.blitarkota.go.id/assets2/https://mpp.bandung.go.id/attachments/https://mpp.bandung.go.id/images/https://mpp.bandung.go.id/assets/thailand/https://perijinan.blitarkota.go.id/data/toto-slot/https://simba.cilacapkab.go.id/db/toto-slot/https://simba.cilacapkab.go.id/vendor/https://appv2.tanahlautkab.go.id/doc/before_ttehttps://appv2.tanahlautkab.go.id/doc/git/https://perijinan.blitarkota.go.id/data/depo-10k/https://mpp.bandung.go.id/git/demo/https://mpp.bandung.go.id/api/jp-gacor/https://simba.cilacapkab.go.id/assets/depo-10k/https://simba.cilacapkab.go.id/api/demo/https://simba.cilacapkab.go.id/api/https://sim.stidar.ac.id/img/https://sim.stidar.ac.id/sweet-bonanza/https://sim.stidar.ac.id/slot-anti-rungkad/https://kuesioner.instidla.ac.id/akun-pro-platinum/https://lpm.instidla.ac.id/lucky-neko/https://ijabr.polban.ac.id/mpo/https://ijabr.polban.ac.id/idn/https://kuesioner.instidla.ac.id/wild-bandito/http://kwitansi.instidla.ac.id/demo-lucky-neko/https://appv2.tanahlautkab.go.id/doc/slot-garansi-kekalahanhttps://appv2.tanahlautkab.go.id/doc/slot-kamboja/https://perdami.or.id/wp-includes/zeus-slot/https://perdami.or.id/wp-content/slot-kamboja/https://appv2.tanahlautkab.go.id/doc/mposlot/http://kwitansi.instidla.ac.id/slot-garansi-kekalahan/https://appv2.tanahlautkab.go.id/doc/idnslot/https://bundamediagrup.co.id/wp-includes/idn/http://103.165.243.97/doc/maxwin-slot/http://103.165.243.97/doc/sv388/https://bundamediagrup.co.id/akun/demo/https://appv2.tanahlautkab.go.id/doc/slot-resmi/https://bundamediagrup.co.id/wp-content/akun-pro-kamboja/https://appv2.tanahlautkab.go.id/doc/toto-slothttp://103.165.243.97/doc/sign/https://ijabr.polban.ac.id/api/https://ijabr.polban.ac.id/-/pulsa/https://sipirus.sukabumikab.go.id/storage/uploads/jp-thailand/https://sipirus.sukabumikab.go.id/storage/uploads/-/sthai/https://sipirus.sukabumikab.go.id/storage/uploads/-/stoto/https://sipirus.sukabumikab.go.id/storage/uploads/server-kamboja/https://alwasilahlilhasanah.ac.id/starlight-princess-1000/https://www.remap.ugto.mx/pages/slot-luar-negeri-winrate-tertinggi/https://waper.serdangbedagaikab.go.id/public/images/qrcode/slot-dana/https://waper.serdangbedagaikab.go.id/public/images/qrcode/slot-deposit-pulsa/https://waper.serdangbedagaikab.go.id/storage/framework/https://wbs.klaten.go.id/public/assets/http://103.165.243.97/doc/thailand/https://appv2.tanahlautkab.go.id/easy-win/https://appv2.tanahlautkab.go.id/doc/unsign/https://csr.katingankab.go.id/asset/https://appv2.tanahlautkab.go.id/doc/zeus/https://appv2.tanahlautkab.go.id/doc/persyaratan/https://tpid.katingankab.go.id/images/https://kuesioner.instidla.ac.id/asset/http://kwitansi.instidla.ac.id/database/http://lms.instidla.ac.id/backup/https://lpm.instidla.ac.id/wp-includes/block-patterns/http://mutu.instidla.ac.id/app/https://sipirus.sukabumikab.go.id/storage/uploads/kantah/https://sipirus.sukabumikab.go.id/storage/uploads/slot-depo-10k/https://ijabr.polban.ac.id/classes/slot-gacor-gampang-menang/https://ijabr.polban.ac.id/registry/https://ijabr.polban.ac.id/locale/https://lpm.instidla.ac.id/wp-content/uploads/https://sipirus.sukabumikab.go.id/storage/uploads/pembahas/