Мощность потерь в индукторе бесферритных индукционных ртутных ламп НД с замкнутой разрядной трубкой

Е.В. ЛОВЛЯ, О.А. ПОПОВ *

НИУ «МЭИ», Москва

* E-mail: popovoleg445@yahoo.com

Аннотация

В рамках трансформаторной модели проведены оценки мощности потерь в ВЧ индукторе бесферритной индукционной лампы НД с замкнутой разрядной диэлектрической трубкой внутреннего диаметра 16, 25 и 38 мм при частоте ВЧ поля 1,7, 3,4 и 5,1 МГц и мощности плазмы разряда 25-500 Вт. Разряд возбуждался в смеси паров ртути (давление около $7,5 \times 10^{-3}$ мм рт. ст.) и аргона (давление 0,1, 0,3 и 1,0 мм рт. ст.) с помощью катушки индуктивности с числом витков 3, 4 и 6, размещённой по «внутреннему» периметру указанной трубки. Установлено, что зависимость мощности потерь в проводе катушки (P_{coil}) от мощности плазмы разряда имеет минимум и что $P_{\rm coil}$ падает с ростом частоты ВЧ поля, диаметра разрядной трубки и числа витков катушки индуктивности и слабо зависит от давления аргона. Результаты расчёта находятся в удовлетворительном качественном согласии с экспериментальными, а расхождения объясняются неучётом в модели разряда скин-эффекта и радиальной неоднородности напряжённости электрического поля.

Ключевые слова: индукционный разряд, замкнутая разрядная трубка, разрядная плазма, НД, катушка индуктивности, мощность потерь.

Введение

Плазма бесферритных индукционных разрядов, возбуждаемых в смеси паров ртути и инертных газов НД в замкнутых кварцевых трубках, — перспективный источник УФ излучения [1, 2]. Из-за отсутствия внутренних электродов индукционные УФ лампы могут работать при низких давлениях буферного инертного газа (0,1—0,5 мм рт. ст.), наиболее эффективных для генерации УФ резонансного излучения ртутной плазмы НД [3].

Поскольку в бесферритном индукционном разряде НД, возбуждаемом на частоте f < 10 МГц, электромагнитное излучение ничтожно мало [4], то потребляемая лампой мощность $P_{\rm lamp}$ складывается из поглощаемой плазмой разряда мощности $P_{\rm pl}$ и мощности потерь в проводе катушки $P_{\rm coil}$ [5, 6]. Из этого следует, что для получения энергоэффективных индукционных УФ ламп следует максимизировать КПД катушки индуктивности $\eta_{\rm coil}$ (=1 $-P_{\rm coil}/P_{\rm lamp}$) [1], т.е. минимизировать $P_{\rm coil}$.

В настоящей работе с использованием трансформаторной модели индукционного разряда НД [5, 6] исследовалось влияния на $P_{\rm coil}$ конструктивных параметров замкнутой разрядной трубки (её диаметра и давления буферного инертного газа), числа витков катушки N, f и $P_{\rm pl}$.

Конструкции разрядной трубки и ВЧ индуктора

Расчёты проводились для ламп длиной ($l_{\rm lamp}$) 406, 426 и 454 мм и шириной ($H_{\rm lamp}$) 106, 126 и 154 мм соответственно, имеющих: разрядную трубку с внутренним диаметром ($d_{\rm t}$) 16, 25 и 38 мм и толщиной стенки (Δ) 1,0, 1,5 и 2,0 мм соответственно; катушку индуктивности из многожильного медного провода (литцендрат) диаметром ($d_{\rm w}$) 1,63 мм с удельным погонным сопротивлением ($\rho_{\rm w}$) 8,5·10⁻⁴

Ом/см (при f = 2-5 МГц) и N = 3, 4и 6. размещённую по «внутреннему» периметру лампы с длиной каждой «длинной» (l_{per}) и каждой «короткой» $(H_{\rm per})$ его сторон 370 и 70 мм соответственно (рис. 1). При этом: а) давление паров ртути в трубке принималось оптимальным (по максимуму потока резонансного излучения): порядка $7,5\cdot 10^{-3}$ мм рт. ст., а давление инертного газа (аргон) – равным 0,1, 0,3 и 1,0 мм рт. ст.; б) значения f выбирались из условия $\omega \ll v_e$ (где $\omega = 2\pi f$ круговая частота ВЧ поля, v_e — частота упругих соударений в плазме электронов с атомами ртути и инертного газа), при котором можно пренебречь реактивной (индуктивной) составляющей напряжённости ВЧ электрического поля в плазме $E_{\rm pl}$; e) принималось, что $P_{\rm pl} = 25-500 \; \rm Br.$

Уравнения для расчёта параметров плазмы и катушки индуктивности

Для расчёта электрических параметров плазменного витка и катушки индуктивности использовалась трансформаторная модель индукционного разряда НД [5, 6] при допущении постоянно-токовой аналогии [4] и пространственной (радиальной и азимутальной) однородности $E_{\rm pl}$ и пренебрежении скин-эффектом.

 P_{coil} рассчитывалась как

$$P_{\text{coil}} = I_{\text{coil}}^2 R_{\text{coil}}, \tag{1}$$

где $I_{\rm coil}$ – ВЧ ток в катушке, а $R_{\rm coil}$ – активное сопротивление провода катушки, рассчитываемое как

$$R_{\text{coil}} = \rho_{\text{w}} l_{\text{coil}}, \qquad (2)$$

где l_{coil} — длина провода катушки, определяемая как

$$l_{\text{coil}} = 2(l_{\text{per}} + H_{\text{per}})N$$
. (3)

Рис. 1. Схематический эскиз бесферритной индукционной лампы с замкнутой разрядной трубкой и ВЧ индуктором (катушкой идуктивности)

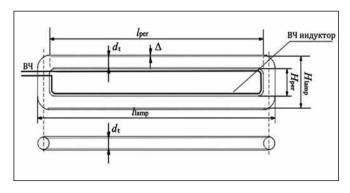


Рис. 2. Зависимость мощности потерь в проводе катушки $P_{\rm coil}$ от мощности плазмы $P_{\rm pl}$. Диаметр трубки $d_{\rm tr}$ мм: 16 (красный), 25 (синий), 38 (чёрный); давление аргона $p_{\rm Apr}$ мм рт. ст.: \bullet – 0,1; \blacktriangle – 0,3; \blacksquare – 1,0; количество витков катушки N = 4; частота ВЧ поля f = 3,4 МГц

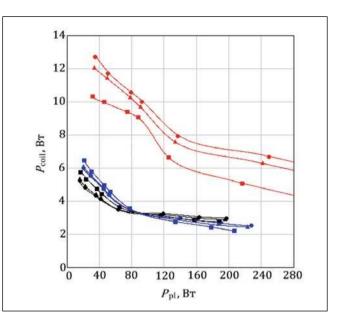


Рис. 3. Зависимость P_{coil} от P_{pl} . d_{t} , мм: 16 (красный), 25 (синий), 38 (чёрный); p_{An} , мм рт. ст.: \bullet – 0,1; \blacktriangle – 0,3; \blacksquare – 1,0; N = 4; f = 5,1 МГц

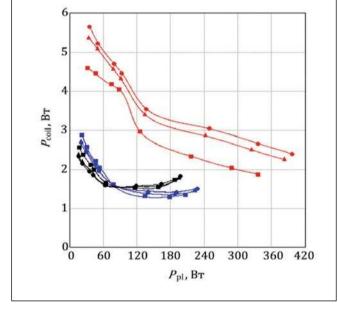
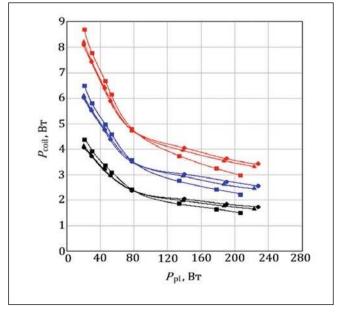



Рис. 4. Зависимость P_{coil} от мощности плазмы $P_{\text{pl}}.$ $d_{\text{t}}=25$ мм; N: 3 (красный), 4 (синий), 6 (чёрный); p_{Ar} мм рт. ст.: $\bullet - 0.1$; $\blacktriangle - 0.3$; $\blacksquare - 1.0$; f = 3.4 МГц

В соответствии с трансформаторной моделью индукционного разряда выражение для ВЧ тока индуктора $I_{\rm coil}$ имеет вид [6]

$$I_{\text{coil}} = \frac{\bar{E}_{\text{pl}} \Lambda_{\text{pl}} \sqrt{1 + Q_{\text{pl}}^2}}{\omega M}, \qquad (4)$$

где $\Lambda_{\rm pl}$ — длина плазменного витка, определяемая как длина осевой линии замкнутой разрядной трубки, $\bar{E}_{\rm pl}$ — усреднённая по сечению плазменного витка активная составляющая напряжённости ВЧ электрического поля в плазме, M — взаимная индуктивность плазменного витка и катушки индуктивности [5, 6]:

$$M = k\sqrt{L_{\text{coil}}L_{\text{ind}}}, \qquad (5)$$

где $L_{
m coil}$ — индуктивность плоской катушки ($D_{
m coil}$ >> $H_{
m coil}$):

$$L_{\text{coil}} = 0.56 \mu_{\text{o}} \pi D_{\text{coil}} N^2,$$
 (6),

где $H_{\rm coil} \approx d_{\rm w}$ — высота катушки, $D_{\rm coil} = (4S_{\rm coil}/\pi)^{1/2}$ — эквивалентный диаметр катушки; k — коэффициент связи плазменного витка с катушкой, рассчитываемый, как отношение охватываемой витком катушки площади $S_{\rm coil}$ к площади, охватываемой плазменным витком, $S_{\rm pl}$ [5, 6]:

$$k = \frac{S_{\text{coil}}}{S_{\text{pl}}},$$

где $Q_{\rm pl}$ — добротность плазменного витка, определяемая как

$$Q_{\rm pl} = \frac{\omega L_{\rm ind}}{R_{\rm pl}},$$

где $R_{\rm pl} = P_{\rm pl}/I_{\rm pl}^2$ – активное сопротивление плазменного витка, $I_{\rm pl}$ — разрядный ток лампы, $L_{\rm ind}$ — геометрическая индуктивность плазменного витка [7]:

$$L_{\text{ind}} = 2\pi D_{\text{pl}} \left[\ln \left(\frac{4D_{\text{pl}}}{0.39d_{\text{pl}}} \right) - 2 \right] \cdot 10^{-9},$$

где $d_{\rm pl}\approx 0.75d_{\rm t}$ – диаметр сечения плазменного витка, $D_{\rm pl}=(4S_{\rm pl}/\pi)^{1/2}$ – эквивалентный диаметр охватываемого плазменным витком сечения площадью $S_{\rm pl}$ [8].

Из (1)–(4) вытекает выражение, связывающее P_{coil} с параметрами катушки и плазмы индукционного разряда:

$$P_{\text{coil}} = \frac{\left(\bar{E}_{\text{pl}} \Lambda_{\text{pl}}\right)^{2} (1 + Q_{\text{pl}}^{2}) \rho_{\text{w}} l_{\text{coil}}}{\left(\omega M\right)^{2}} \ . \tag{7}$$

При этом, в приближении постоянно-токовой аналогии, в качестве значений $\bar{E}_{\rm pl}$ при указанных выше давлениях аргона и паров ртути использовались соответствующие значения напряжённости электрического поля в положительном столбе ртутно-аргонового разряда переменного тока на частоте 50 Γ ц [9].

Уравнение (7) с учётом выражений (3), (5) и (6) можно привести к виду

$$P_{\text{coil}} = \frac{\left(\bar{E}_{\text{pl}} \Lambda_{\text{pl}}\right)^{2} (1 + Q_{\text{pl}}^{2}) \rho_{\text{w}} (l_{\text{per}} + H_{\text{per}})}{0.28 \mu_{\text{o}} \pi D_{\text{coil}} N (k\omega)^{2} L_{\text{ind}}}.$$
 (8)

Результаты расчётов и их обсуждение

На рис. 2–5 приведены зависимости $P_{\rm coil}$ от $P_{\rm pl}$, рассчитанные для ламп с вышеуказанными вариантами конструкций разрядной трубки и ВЧ индуктора.

Видно, что при относительно малых $P_{\rm pl}$ во всех лампах $P_{\rm coil}$ заметно падает с ростом $P_{\rm pl}$. С дальнейшим увеличением $P_{\rm pl}$ это падение «замедляется» и при некотором значении $P_{\rm pl} = P_{\rm pl,\; min}\,P_{\rm coil}$ достигает минимума $P_{\rm coil,\; min}$, а затем несколько возрастает с ростом $P_{\rm pl}$. Чем больше $d_{\rm t}$, тем при меньшем $P_{\rm pl,\; min}$ достигается $P_{\rm coil,\; min}$.

Повышение f приводит к снижению $P_{\rm coil}$ и сдвигает $P_{\rm coil,\ min}$ в сторону меньших $P_{\rm pl}$. Такое снижение следует из трансформаторной модели индукционного разряда, возбуждаемого на $\omega << v_{\rm e}$, т.к. при этом изменение ω никак не сказывается на балансе мощности в плазме [4]. Соответственно, $\bar{E}_{\rm pl}$, а значит и ВЧ напряжение на плазменном витке $U_{\rm pl}$ (= $\bar{E}_{\rm pl} \Lambda_{\rm pl}$), не зависят от частоты ω . В соответствии с трансформаторной моделью индукционного разряда ВЧ напряжение на катушке индуктивности $U_{\rm coil}$ связано с $U_{\rm pl}$ как $U_{\rm coil} \approx U_{\rm pl} N/k^{1/2}$ [2, 6].

В то же время индуктивное сопротивление катушки $\omega L_{\rm coil}$, где $L_{\rm coil}$ – индуктивность катушки, линейно растёт с ростом ω . А поскольку ток $I_{\rm coil} \approx U_{\rm coil}/(\omega L_{\rm coil})$, т.к. $\omega L_{\rm coil} >> R_{\rm coil}$, то он обратно пропорционален ω , а $P_{\rm coil}$, с учётом (1), обратно пропорциональна f^2 . Это и показывают результаты расчёта $P_{\rm coil}$ при двух разных f, 3,4 и 5,1 МГц, для ламп с одинаковыми

Рис. 5. Зависимость P_{coil} от P_{pl} . $d_t = 16$ и 25 мм; $p_{Ar} = 1,0$ мм рт. ст.; N = 3; f = 1,7 МГц

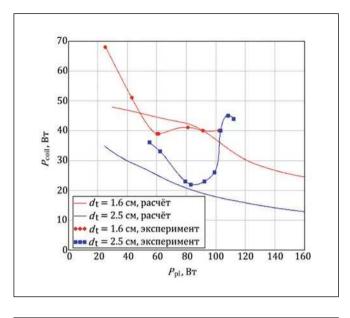
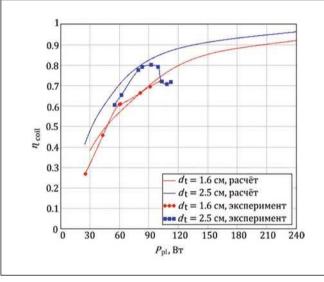



Рис. 6. Зависимость КПД ВЧ индуктора (катушки) $\eta_{\rm coil}$ от $P_{\rm pl}$. $d_{\rm t}=16$ и 25мм; $p_{\rm Ar}=1,0$ мм рт. ст.; N=3;f=1,7 МГц

конструктивными параметрами (рис. 2 и 3).

При этом также видно, что $P_{\rm coil}$ при относительно больших $P_{\rm pl}$ в лампе с $d_{\rm t}=38$ мм может быть больше, чем в лампе с $d_{\rm t}=25$ мм. Чем выше f, тем при меньших $P_{\rm pl}$ пересекаются кривые $P_{\rm coil}$ ($P_{\rm pl}$), рассчитанные для ламп с разными $d_{\rm t}$.

В низкотемпературной плазме НД повышение её мощности (фактически, концентрации электронов $n_{\rm e}$) сопровождается переходом ионизации от прямой к ступенчатой и, как следствие, уменьшением $E_{\rm pl}$ [4]. В индукционных бесферритных разрядах НД, возбуждаемых с помощью катушки индуктивности на частотах $\omega << v_{\rm e}$, снижение $\bar{E}_{\rm pl}$ приводит к снижению $U_{\rm pl}$, и, согласно (7) и (8), тем более $P_{\rm coil}$.

Увеличение $d_{\rm t}$, от 16 до 25 мм снижает $\bar{E}_{\rm pl}$ [2, 9], что, по (8), существенно снижает $P_{\rm coil}$ (рис. 2 и 3), но уве-

личивает $\Lambda_{\rm pl}$ и $Q_{\rm pl}$, и уменьшает (изза увеличения $S_{\rm pl}$) k. В результате, как следует из (8) и рис. 2 и 3, зависимость $P_{\rm coil}$ от $d_{\rm t}$ носит сложный характер, с минимумом при повышенных $P_{\rm pl}$ и f.

Повышение давления буферного газа (аргона) от 0,1 до 1,0 мм рт. ст. несущественно снижает $E_{\rm pl}$ [9] и, в соответствии с (7) и (8), $P_{\rm coil}$ (рис. 2 и 3).

Рост $P_{\rm pl}$ (а, следовательно, $I_{\rm pl}$ и $n_{\rm e}$) сопровождается уменьшением $R_{\rm pl}$, что (при разумном допущении независимости $L_{\rm ind}$ от $I_{\rm pl}$) повышает $Q_{\rm pl}$ (= $\omega L_{\rm ind}/R_{\rm pl}$). При малых $P_{\rm pl}$, когда велико $R_{\rm pl}$, $Q_{\rm pl}$ низка (<0,1) и, согласно (7) и (8), не влияет на $P_{\rm coil}$. С ростом $P_{\rm pl}$ и $d_{\rm t}$ уменьшается $R_{\rm pl}$ и $Q_{\rm pl}$, и, соответственно, растёт влияние последней на $P_{\rm coil}$ и на характер зависимости $P_{\rm coil}$ от $P_{\rm pl}$, которая из падающей становится возрастающей, образуя минимум (рис. 3). Аналогичные зависи-

мости $P_{\rm coil}$ от $P_{\rm pl}$ с минимумом, смещающимся с ростом f и $d_{\rm t}$ в сторону меньших $P_{\rm pl}$, экспериментально наблюдались в линейных бесферритных индукционных лампах, возбуждаемых с помощью катушки индуктивности на f=6–12 М Γ ц [10].

Как видно из рис. 4, увеличение N снижает P_{coil} , согласно (11).

Сравнение результатов расчёта с экспериментом

Как видно из рис. 5, рассчитанные для обеих указанных ламп значения $P_{\rm coil}$ с ростом $P_{\rm pl}$ практически монотонно падают с 48 до 25 Вт при $d_{\rm t}=16$ мм и с 35 до 12 Вт при $d_{\rm t}=25$ мм. При этом экспериментальные зависимости $P_{\rm coil}$ от $P_{\rm pl}$ [2] (рис. 5) имеют по одному минимуму: слабо выраженному при $P_{\rm pl,\ min}=60$ Вт в лампе с $d_{\rm t}=16$ мм и ярко выраженному при $P_{\rm pl,\ min}=85$ Вт в лампе с $d_{\rm t}=25$ мм. Отметим, что в лампе с $d_{\rm t}=16$ мм экспериментальные значения $P_{\rm coil}$ близки к рассчитанным, а в лампе с с $d_{\rm t}=25$ мм значительно больше них.

Из рис. 5 также видно, что минимумы кривых $P_{\rm coil}(P_{\rm pl})$ приходятся на заметно меньшие $P_{\rm pl}$ чем те, которые в индукционных разрядах с f=1,7 МГц соответствуют минимумам, связанным с повышением $Q_{\rm pl}$ с ростом $P_{\rm pl}$. Представляется, что минимум и последующий рост $P_{\rm coil}$ в экспериментальных зависимостях $P_{\rm coil}$ от $P_{\rm pl}$ для обеих ламп связаны со скин—эффектом, проявляющимся в индукционных разрядах при f=1-5 МГц и $n_{\rm e}>10^{11}$ см⁻³ [4, 10, 11].

Действительно, скин-эффект, «выталкивающий» ВЧ электрическое поле к стенкам разрядной трубки в месте расположения провода катушки, повышает $\bar{E}_{\rm pl}$ [4, 11], приводя этим к росту $P_{\rm coil}$. Расхождение расчётных данных с экспериментальными, вероятно, связано с неучётом скин-эффекта в модели индукционного разряда.

Из рис. 6 видно, что в обеих рассматриваемых лампах при относительно малых $P_{\rm pl}$ $\eta_{\rm coil}$ с ростом $P_{\rm pl}$ быстро растёт, далее асимптотически, при больших $P_{\rm pl}$, стремясь к 1. Различия в характере экспериментальных и рассчитанных зависимостей $\eta_{\rm coil}$ от $P_{\rm pl}$ в лампе с $d_{\rm t}$ = 25 мм при $P_{\rm pl}$ > 85 Вт, очевидно, связаны с неучётом скинэффекта в расчётной модели, приводящего к повышению $P_{\rm coil}$ при таких $P_{\rm pl}$ и соответствующему снижению $\eta_{\rm coil}$.

Заключение

- С использованием трансформаторной модели получены аналитические выражения, позволяющие рассчитывать мощность потерь в проводе катушки индукционного разряда НД P_{coil} , возбуждаемого на частотах $\omega << v_{\text{e}}$ в бесферритной замкнутой трубке в смеси паров ртути и аргона.
- Обнаружено, что зависимость P_{coil} от P_{pl} имеет минимум, который сдвигается с увеличением диаметра разрядной трубки d_{t} и частоты ВЧ поля f в сторону меньших P_{pl} .
- Показано, что $d_{\rm t}$ влияет на $P_{\rm coil}$ «через» напряжённость электрического поля, добротность и длину плазменного витка и коэффициент связи катушки с плазменным витком.
- Установлено, что P_{coil} обратно пропорциональна числу витков катушки N и в исследованном интервале давлений 0,1-1,0 мм рт. ст. незначительно снижается с ростом давления инертного газа (аргона).
- Результаты расчётов $P_{\rm coil}$ и КПД катушки для бесферритной индукционной лампы с $d_{\rm t}=16$ мм находятся в удовлетворительном согласии с экспериментом. Расхождения с экспериментом результатов аналогичных расчётов для лампы с $d_{\rm t}$ большего диаметра, 25 мм, при $P_{\rm pl} \ge 80$ Вт предположительно связаны с неучётом в трансформаторной модели индукционного разряда НД скин-эффекта, проявляющегося при повышенных $P_{\rm pl}$.
- Полученные результаты могут использоваться для оптимизации конструктивных параметров (d_t и длины разрядной трубки, N) и f ВЧ поля индукционных бесферритных ртутных УФ ламп НД.

СПИСОК ЛИТЕРАТУРЫ

- 1. Старшинов П.В., Попов О.А., Ирхин И.В., Левченко В.А., Васина В.Н. Индукционная УФ лампа на основе ртутного разряда НД в замкнутой бесферритной трубке // Светотехника. 2019. № 2. С. 44–46.
- 2. Старшинов П.В., Попов О.А., Ир-хин И.В., Васина В.Н., Левченко В.А. Электрические и излучательные характеристики индуционных бесферритных ртутных УФ ламп в замкнутых трубках // Вестник МЭИ. 2019. № 3. С. 87–97.
- 3. Левченко В.А., Попов О.А., Свитнев С.А., Старшинов П.В. Электрические

- и излучательные характеристики лампы трансформаторного типа с разрядной трубкой диаметром 16,6 мм // Светотехника.— 2016.- № 1. С. 41–44.
- 4. $\it Pa \Bar{u} \it sep \ \it HO. \Pi$. Физика газового разряда. М.: Наука, 1987. 591 с.
- 5. Piejak R.B., Godyak V.A., Alexandrovich B.M. A Simple Analyses of an Inductive RF Discharge // Plasma Sources Sci. Technol. 1992. № 1. P. 179–185.
- 6. Popov O.A., Chandler R.T. Ferrite-free High Power Electrodeless Fluorescent Lamp Operated at a Frequency of 160–1000 kHz // Plasma Sources Science and Technology.—2002.—Vol. 11.—P. 218–227.
- 7. Gudmundsson J.T. and Lieberman M.A. Magnetic induction and plasma impedance in a cylindrical inductive discharge // Plasma Sources Sci. Tech.— 1997. Vol. 6.– № 4. P. 540–550.
- 8. Попов О.А., Старшинов П.В., Васина В.Н. Исследование характеристик индукционного бесферритного ртутного разряда низкого давления в замкнутой трубке // Вестник МЭИ. 2018. № 4. С. 89–96.
- 9. *Рохлин Г.Н.* Разрядные источники света. М.: Энергоатомиздат. 1991. 720 с.
- 10. Свитнев С.А., Попов О.А., Левченко В.А., Старшинов П.В. Характеристики бесферритного индукционного разряда низкого давления. Часть 1. Электрические параметры индуктивной катушки // Успехи прикладной физики. 2016. № 2. С. 139—149.
- 11. Никифорова В.А., Попов О.А. Влияние частоты ВЧ поля и разрядного тока на радиальное распределение параметров плазмы индукционного бесфер—ритного разряда в замкнутой трубке // Вестник МЭИ. 2012. № 1 С. 108–114.

Ловля Екатерина Владимировна, студент кафедры «Светотехника» НИУ «МЭИ»

Попов Олег Алексеевич, доктор техн. наук. Окончил в 1965 г. МЭИ. Профессор кафедры «Светотехника» НИУ «МЭИ». Академик АЭН РФ