Анализ характеристик галогенных и светодиодных автомобильных ламп

О.Ю. КОВАЛЕНКО 1, * Ю.А. ЖУРАВЛЁВА 2

- ¹ ФГБОУ ВО «НИ Мордовский государственный университет им. Н.П. Огарёва», Саранск
- ² ФГБОУ ВО «МИРЭА Российский технологический университет», Москва

Аннотация

Анализируются характеристики автомобильных ламп брендов Philips, KOITO, ETI flip chip LEDs, Osram, General Electric (GE), Gtinthebox и OSLAMPledbulbs с цоколями типов *H1*, *H4*, *H7* и *H11* (световой поток, световая отдача, коррелированная цветовая температура, спектр излучения) до начала эксплуатации ламп. По результатам измерений видно, что: 1) значения коррелированной цветовой температуры галогенных ламп близки к заявленным производителями; 2) светодиодные лампы, с учётом фактических значений их коррелированной цветовой температуры, не желательно использовать при неблагоприятных погодных условиях (дождь, туман, снегопад); 3) галогенные лампы разных брендов имеют небольшой разброс по фактическим значениям светового потока и соответствуют по ним обязательным требованиям Правил ЕЭК ООН № 37; 4) световой поток светодиодных ламп больше, чем на 8 %, превышает предельно допустимый; 5) у светодиодных ламп световая отдача выше (> 82 лм/Вт), а энергопотребление ниже, чем у галогенных; 6) потребляемые мощность и ток светодиодных ламп в 3 раза ниже, а световая отдача в 5 раз выше, чем у галогенных ламп-аналогов.

Ключевые слова: светодиодная лампа, галогенная лампа, автомобильная лампа, световой поток, коррелированная цветовая температура, световая отдача, цоколь, установка фотометрическая измерительная, спектр излучения.

1. Введение

В современных автомобилях эксплуатируются разные виды ламп для освещения дорог, сигнализации и вывода информации о состоянии автомобиля. Большинство современных автомобилей имеют фары головного

света с галогенными лампами (ГЛ). Светодиодные (СД) источники света (ИС) на автотранспорте стали успешно применяться в светофорах, дорожных знаках, устройствах индикации в салонах и сигналах торможения. Производители автомобилей постоянно ищут пути улучшения фар головного света, так как от них зависит

детальность обзора водителя в тёмное время суток и в условиях плохой видимости как фактора безопасности движения на дорогах. В настоящее время российский рынок ламп для транспортных средств заполнен большим количеством разнообразных автомобильных ламп, от традиционных ГЛ до относительно новых ИС – СД автомобильных ламп. Рядом исследований СД ИС выявлены проблемы, связанные с условиями освещения ими, влияющими на зрительную работу, эффективность использования в сельском хозяйстве и других областях [1, 2]. Применение СД ИС в фарах головного света остаётся относительно новым направлением, стимулирующим проведение исследования характеристик автомобильных СД ламп.

Рис. 1. Внешний вид исследованных СД ламп *Gtinthebox* с типом цоколя *H1*

Рис. 2. Внешний вид СД лампы OSLAMPledbulbs с типом цоколя H4

Рис. 3. Внешний вид СД ламп ETI flip chip LEDs с типом цоколя H11

Таблица 1

Технические параметры автомобильных галогенных ламп

Производитель	Потребляемая мощность, Вт	$arPhi_{ m v}$, лм	<i>Т</i> _{кц} , К
GE	55	1550	3000
Osram	55	1550±10 %	3000
KOITO	60	-	4500
Philips	55	1550±10 %	3700

^{*} E-mail: ulypil@mail.ru

Результаты измерения автомобильных ламп

№ лампы	Производитель, тип лампы	Напряжение пита- ния, В	Потребляемая мощность, Вт	$arPhi_{ m v}$, лм	$T_{ ext{ iny KU}}$, \mathbf{K}
1	Osram H1, ГЛ (образец 1)		67,6	1692	3280
2	Osram H1, ГЛ (образец 2)		62,0	1491	3150
3	<i>GE H1</i> , ГЛ		67,3	1671	3212
4	КОІТО Н4 (ближний свет, образец 1), ГЛ		63,8	710	3548
5	КОІТО Н4 (ближний свет, образец 2), ГЛ		63,8	696	3562
6	КОІТО Н4 (дальний свет, образец 1), ГЛ		68,1	1166	3822
7	КОІТО Н4 (дальний свет, образец 2), ГЛ		68,2	1162	3815
8	Philips, H7 (образец 1), ГЛ	13,2	54,1	1029	3385
9	Philips, H7 (образец 2), ГЛ		54,3	1043	3382
10	<i>Gtinthebox H1,</i> СД лампа (образец 1)		23,4	1936	7616
11	<i>Gtinthebox H1</i> , СД лампа (образец 2)		23,6	1940	7515
12	OSLAMPledbulbs H4, СД лампа (ближний свет, образец 1)		19,5	1340	6524
13	OSLAMPledbulbs H4, СД лампа (ближний свет, образец 2)		20,6	1705	6729
14	OSLAMPledbulbs H4, СД лампа (дальний свет, образец 1)		19,1	1815	6530
15	OSLAMPledbulbs H4, СД лампа (дальний свет, образец 2)		20,2	1929	6456
16	<i>ETI flip chip LEDs H11</i> , СД лампа (образец 1)		10,9	878	5306
17	<i>ETI flip chip LEDs H11</i> , СД лампа (образец 2)		9,7	789	5142
Требования Правил ЕЭК ООН № 37 [8]		13,2 B	≤ 68 B _T	1550 лм ± 15 %	_

Рис. 4. Внешний вид ГЛ *General Electric (GE*) и *Osram* с типом цоколя *H1*

Рис. 5. Внешний вид ГЛ *KOITO White Beam III Premium* с типом цоколя *H4*

Рис. 6. Внешний вид ГЛ *Philips White Vision с* типом цоколя *H7*

«СВЕТОТЕХНИКА», 2020, № 2

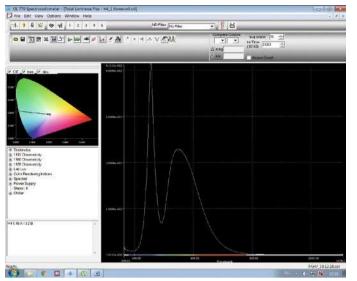
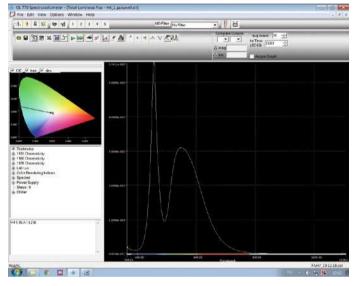



Рис. 7. Результат спектральных измерений СД лампы *OSLAMPledbulbs* в режиме ближнего света

Рис. 8. Результат спектральных измерений СД лампы OSLAMPledbulbs в режиме дальнего света

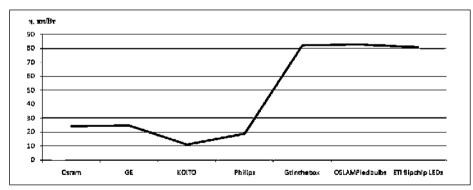


Рис. 9. Световые отдачи исследованных ламп

2. Исследование характеристик автомобильных ламп

Для оценки светотехнических параметров ламп для фар головного света, в частности светового потока $\Phi_{\rm v}$ и коррелированной цветовой температуры $T_{\rm kll}$, были выбраны ГЛ и СД лампы брендов *Philips*, *MTF Titanium*, *KOITO*, *ETI flip chip LEDs*, *Osram*,

General Electric (GE) и Gtinthebox в количестве до 2 образцов.

Измерения параметров этих образцов были проведены в ЦКП «Светотехническая метрология» Института электроники и светотехники согласно ГОСТ [3] с использованием фотоколориметрической установки фирмы $Gooch\ \&\ Housego\$ для измерений $\Phi_{\rm v}$, потока излучения

 Φ_e , спектральной плотности потока излучения $\Phi_{\rm e}(\lambda)$, $T_{\rm KII}$, общего $(R_{\rm a})$ и специальных (R_i) индексов цветопередачи, координат цвета и цветности в системах XYZ (1931), uv (1960) и и'v' (1976) [4]. Принцип действия установки основан на определении $\Phi_{\rm e}$ путём измерения абсолютной $\Phi_{\rm e}(\lambda)$ и её интегрировании по λ. Установка содержит фотометрический шар OL IS-7600 (диаметр 1,95 м), многоканальный спектрорадиометр OL 770 VIS/NIR, оптоволоконный кабель 770-7G-3.0, прецизионный источник постоянного тока OL410-200 PRESISION LAMP SOURCE (для питания вспомогательной лампы AUX LAMP A180) и арматуру для крепления ламп и компьютера [5]. Основные технические характеристики установки: спектральный диапазон – 380–1100 нм, шаг сканирования – 0,75 нм, коэффициент отражения внутренней поверхности шара – не менее 0,986, диапазон измерения $T_{\text{кш}} - 1500 - 10000$ К, пределы допускаемой абсолютной погрешности измерений $T_{\rm \kappa u}$ – \pm 25 K, диапазон показаний $\Phi_{\rm v} - 0.01 -$ 100000 лм, диапазон измерений Φ_{v} – 5-2500 лм, пределы допускаемой относительной погрешности измерений $\Phi_{\rm v} - \pm 9 \%$.

На рис. 1–6 представлен внешний вид исследованных ИС.

Параметры ГЛ, заявленные производителем, приведены в табл. 1; они соответствуют предельным и номинальным электрическим и световым параметрам ГЛ, приведённым в ГОСТ [6]. Сведения о параметрах СД ламп на их упаковке отсутствуют. Значения тока ГЛ составили от 4,1-5,2 A, а тока СД -0,8-1,5 A. Соответствующие результаты измерений приведены в табл. 2.

Результаты исследований спектральных характеристик СД лампы OSLAMPledbulbs, в соответствии с ГОСТ [7], представлены на рис. 7 и 8, из которых виден сильный пик излучения в синей области спектра, что объясняет значительно большие $T_{\rm кц}$ у СД ламп типов OSLAMPledbulbs H4: 6729 и 6524 К для режима ближнего света и 6456 и 6530 К — дальнего, чем у ГЛ типов KOITO H4: 3548 и 3562 К для режима ближнего света и 3822 и 3815 К — дальнего.

На рис. 9 представлено сравнение исследованных ламп по световой отдаче.

3 Анализ полученных результатов

Анализ результатов измерений (табл. 2) показал, что:

- ГЛ разных брендов имеют небольшой разброс по фактическим значениям Φ_{v} от лампы к лампе (≤ 14 %);
- потребляемая мощность у ГЛ завышена относительно номинальной более чем на 11 %, но не превышает предельно допустимой (но следует учесть, что измерения проводились при испытательном напряжении 13,2 В, а номинальная мощность указана для напряжения 12 В);
- потребляемая мощность у СД ламп намного ниже, чем у ГЛ (больше чем на 65 %);
- световая отдача у СД ламп выше, а энергопотребление ниже, чем у ГЛ. Световая отдача у лампы № 12 ниже, чем у лампы № 13 из-за меньшего $\Phi_{\rm v}$;
- $-T_{\text{кц}}$ у ГЛ всех брендов близки к заявленным, а у СД ламп соответствуют холодно-белому свету;
- СД лампы, с учётом их фактических $T_{\text{кц}}$, нежелательно использовать при неблагоприятных погодных условиях (дождь, туман, снегопад);
- все ГЛ соответствуют по фактическим значениям $\Phi_{\rm v}$ обязательным требованиям Правил [8], а СД лампы имеют $\Phi_{\rm v}$ в среднем выше, чем на 8 %, предельно допустимого, кроме лампы № 12, у которой фактический $\Phi_{\rm v}$ составил 1340 лм;
- потребляемые мощность и ток у СД ламп в 3 раза ниже, а световая отдача в 5 раз выше, чем у соответствующих ГЛ-аналогов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Железникова О.Е., Амелькина С.А., Синицына Л.В. Об эффективности освещения светодиодами по зрительной работе // Светотехника. 2018. № 2. С. 6—10.
- 2. Коваленко О.Ю., Пильщикова Ю.А. Повышение эффективности и контроль параметров источников излучения и облучательных установок в сельском хозяйстве // Фотоника. 2017. № 8(68). С. 68—73.
- 3. ГОСТ Р 8.749—2011 «Государственная система обеспечения единства измерений. Светодиоды. Методы измерения фотометрических характеристик».
- 4. Приложение к свидетельству № 64753 об утверждении типа средств

- измерений. Описание типа средства измерений. Комплекс светотехнический измерительный. М., 2017. 8 с.
- 5. Приложение к свидетельству № 64752 об утверждении типа средств измерений. Описание типа средства измерений. Установка фотоколориметрическая измерительная. М., 2017. 7 с.
- 6. ГОСТ Р МЭК 60809–2012 «Лампы для дорожных транспортных средств. Требования к размерам, электрическим и световым параметрам».
- 7. ГОСТ Р 55703–2013 «Источники света электрические. Методы измерений спектральных и цветовых характеристик».
- 8. Правила ЕЭК ООН N37 (пересмотр 7) «Единообразные предписания, касающиеся официального утверждения ламп накаливания, предназначенных для использования в официально утверждённых фарах механических транспортных средств и их прицепов».

Коваленко Ольга Юрьевна, доктор техн. наук, доцент. Окончила в 1983 г. МГУ им. Н.П. Огарёва по специальности «Светотехника и источники света». Профессор кафедры метрологии, стан-

дартизации и сертификации Института электроники и светотехники Национального исследовательского Мордовского государственного университета им. Н.П. Огарёва. Область научных интересов: измерение и контроль параметров осветительных и облучательных систем

Журавлёва Юлия Алексеевна, кандидат техн. наук, доцент. Окончила в 2010 г. МГУ им. Н.П. Огарёва по специальности «Светотехника и источники света». Доцент кафедры источников

света Института электроники и светотехники Национального исследовательского Мордовского государственного университета им. Н.П. Огарёва и кафедры электроники РТУ «МИРЭА». Область научных интересов: энергосберегающие светотехнические установки; параметры компактных люминесцентных ламп и светодиодных источников света; вакуумная техника

Новая «Справочная книга по светотехнике»

Новое, четвёртое издание Справочной книги по светотехнике (СКС-4) подготовлено творческим коллективом ведущих российских специалистов под общим руководством доктора техн. наук, профессора Айзенберга Ю.Б.

Книга объёмом 892 страницы цветной печати содержит новые и актуальные материалы.

В книгу вошло всё наиболее важное в современной светотехнике:

- Светодиоды и области их эффективного использования;
- компьютерное моделирование осветительных установок и световых приборов;
- автоматическое управление освещением зданий и наружного освещения;
- новейшие сведения о спортивном освещении и об освещении музеев;
- новое в широком использование УФИ излучения;
- освещение всех видов транспорта, (автомобильного, железнодорожного, авиационного, а также и аэродромов);
- о теории светового поля и её практическом использовании;
- о современном световом дизайне и архитектурном освещении.

Книга содержит подробные сведения о наружном освещении улиц, дорог, тоннелей с переходом от контроля освещённости к нормированию яркости.

- о свете в медицине;
- о проблемах освещения при освоении мирового океана и космоса.

Книга содержит актуализированные сведения о метрологии и фотометрии, а также полную информацию о незрительных воздействиях света на организм человека.

Авторами книги являются:

- 13 докторов наук-профессоров
- 19 кандидатов наук
- 20 специалистов разных направлений.

Приобрести новое издание можно в редакции журнала «Светотехника», отправив заявку на адрес электронной почты bulgakova@l-e-journal.com.

С уважением, Ю.Б. Айзенберг

«СВЕТОТЕХНИКА», 2020, № 2