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ABSTRACT

In a concise, but accessible for the first acquaint-
ance form the procedure for the quantization of 
linear oscillator is set out. By analogy with this 
procedure the procedure of quantization (second 
quantization) of classical Maxwell’s electrodyna­
mics is set up. The physical sense of the wave func-
tions arguments of transverse electromagnetic field 
and its Fourier transformation is set up. One pay 
attention as for quantum coherent (almost a clas-
sic) states of the electromagnetic field and for pho-
tonics Fock states. Attention is drawn to the fact 
of absence the power of the universal content of 
such concepts as field amplitude, phase and num-
ber of particles (photons), which are used by ex-
perimenter’s to describe the states of a quantized 
field. The semi quantitative description the interac-
tion processes of a quantum electromagnetic field 
with substance is set up. Specified situations are 
shown in which the discrepancy between the pre-
dictions of classical and quantum electrodynamics 
is noticeable at the macroscopic level.

Keywords: classical electrodynamics, quantum 
electrodynamics, quantum coherent states, Fock 
states, photon

1. INTRODUCTION

About a hundred years ago, a famous French 
physicist L. de Broglie (1892–1987) posed the prob-
lem to describe the diffraction and interference pho-
ton properties, which existence was theoretical-

ly predicted by M. Planck (1858–1947) in 1905. 
On the basis of his theory [1] de Broglie put the 
then-known equations E ω=  and 2E mc= . This 
way led him to the conclusion that the photon pos-
sesses a small, but a finite mass. At the same time 
it remains unclear what are the principal differen-
ces between the photon and the other “massive” el-
ementary particles. And then de Broglie came up 
to the brilliant idea: if the fundamental differences 
between the particles are absent than, on the contra-
ry, all “massive particles” like a photon have to pos-
sess the wave properties. In such way the quantum 
mechanics of particles of the final mass was con-
structed. But formulated above the primary prob-
lem hasn’t been fulfilled by de Broglie. The theory 
of a photon possessing both corpuscular and wave 
properties, was constructed later, in five years, by 
the work of other scientists. This theory turned out 
to be rather rich and complex, requiring the com-
mon efforts of many people. Below in elementary 
terms one presents its main concepts.

The idea of the light and its internal structure by 
the development of scientific knowledge has under-
gone dramatic perturbations. The concept of “ray 
of light” has ancient origin. There are two author of 
the law of refraction: V. Snellius (1580–1626) and 
R. Descartes (1596–1650). In works of С. Huygens 
(1629–1695), R. Hooke (1635–1703), and particle 
I. Newton (1643–1727) was opened the wave nature 
of light. But the date of establishment of this theo-
ry should considered the 1865, when J.C. Maxwell 
(1831–1879) got from his theory of electricity and 
magnetism the conclusion of the existence of elec-
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tromagnetic waves. Describing by electric Ev (r,t) 
and magnetic ( , )H r tν  strength posed at each point 
of space r at any time t, these waves perfectly defi-
nite quantity the interference, diffraction and the po-
larization of light. As for radiation and absorption of 
light, this theory is coming across the difficulties.

Investigating this question, firstly from thermo-
dynamic point of view, and then developing the 
hypothesis of L. Bolsman (1844–1906) about the 
inevitability in the nature of the jump-figurative 
processes, M. Planck introduced the concept “pho-
ton” into the theory, which was reported by him at 
a meeting in German Physical Society 14 Decem-
ber 1905 year. Introduction the “photon” has made 
possible the understanding of atomic phenomena. 
As for the properties of the photon until the end of 
the twentieth years of last century one know nothing 
apart the expressions for its energy ω  (ω is the fre-
quency) and momentum k  (k  is the wave vector). 
As soon as one speaks about the photons, he/she 
had to forget about the attributes of Maxwell theo-
ry ( ),E r tν  and ( ),H r tν . So the Planck’s constant 

271,05 10 ' s−= ⋅ ⋅erg

 came to the theory. But rather 
soon it became clear that this constant is applicable 
not to light only, but also to bodies of finite mass.

In the works in the first place N. Bohr (1885–
1962), L. de Broglie, W. Heisenberg (1901–1976) 
and E. Schrödinger (1887–1961) the quantum me-
chanics of particles of final mass was constructed. It 
was this theory that pointed the way and the need of 
building a consistent quantum theory of optical phe-
nomena. The necessity of such theory directly fol-
lows from the definition of electric strength ( ),E r tν  
as the force acting from the force on a single point 
charge. In quantum theory, any charged body de-
scribes by the wave function, the concept of locali-
zation blurs. Together with it, the classical concept 
of electric strength is blurred. The quantum theory 
of the electromagnetic field was built in the papers 
of P. Dirac (1902–1984), V. Heisenberg, V. Pau-
li (1900–1958), P. Jordan (1902–1980) and E. Fer-
mi (1901–1954) in the period from 1927 to 1930. 
This theory combines classical (wave) and quan-
tum (corpuscular) properties of photons. On a ques-
tion “What is a photon?” this theory gives a clear 
answer: “Photon is an electromagnetic object de-
scribed by its wave function”. The explicit form 
of the wave function is well known, whereas with 
her interpretation the situation is more complicat-
ed. Here are stored all problems, characteristic of 
quantum mechanics wave function of particles of fi-

nite mass, often discussed up to now [2]. But at the 
same time be more questions about the methods of 
its calculation. In spite of the fact that such a theo-
ry is now well developed, in engineering practice 
it still has not found its application. This review 
aims to introduce the reader to enter into the non-
trivial circle of quantum theory of electromagnetic 
field ideas. I want to believe that, if the reader with 
pencils in hand will review the proposed review of 
more than one under consideration, it will signifi-
cantly facilitate him /her further acquaintance with 
voluminous manuals [3] on the subject.

2. THE CLASSICAL 
ELECTROMAGNETIC FIELD AND 
THE QUANTUM OSCILLATOR

According to Maxwell’s equations, electromag-
netic waves characterizing the propagation of light 
in the vacuum can be described by introducing the 
vector potential ( )A r,tν  that satisfy the wave equa-
tions [4]:

2
2

2 2

1( , ) ( , ) 0.ν ν∂∇ − =
∂

A r t A r t
c t

(1)

Instead of the vector potential one traditionally 
use vectors

1( , ) ( , ) andν ν∂= −
∂

E r t A r t
c t (2)

( , ) ( , ).ν ν=H r t rotA r t

The solution of equation (1) can be represented 
in the form of superposition of plane waves

( )( , ) ,ν ν
λ λ λ

λ
γ α α− ∗ − += +∑ i ikct i ikct

kA r t e e ekr kr
k k k

k
(3)

where k is the wave vector with components 

{ }, ,x y zk k k , λαk  is dimensionless constants that de-

pends on wavelength 2 / kπ=  and the index of 
transverse ( ) 0kke λ =  polarization 1,2λ = . By eνλk  
the unit vectors are designated perpendicular to the 
direction of wave propagation that is to vector k
. Next, c  is the speed of light in vacuum, and the 
functions kγ , having the dimension of a vector po-
tential are introduced for the convenience of fur-
ther consideration. If one put ( )exp iλ λ λα α ϑ=k k k  
we get:
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( )(r, ) cos ,A t e A kctν ν
λ λ λ

λ
ϑ= − +∑ k k k

k
kr

(4)
2 .kA λ λα γ=k k

According to (4) the classical electromagnet-
ic waves described by entering the classical oscil-
lator at each point of space r , which performs the 

harmonic oscillations ( )cosA kctλ λϑ− +krk k  with 

the frequency k kcω = . This suggests that one de-
scribes the quantum the electromagnetic wave then 
the classical oscillators must be replaced by quan-
tum one.

Recall that under the classical oscillator one 
means the material point with mass m, which coor-
dinate ( )x t  under the action of elastic forces 

( ) ( )f t x tχ= −  performs the harmonic oscillations 
with the frequency ω. From the Newton’s law 
( )2 2/ ( ) ( )m d dt x t x tχ= −  it follows that

( )0( ) cosx t x tω ϑ= +  where / mω χ= .

How to construct a quantum theory of the oscil-
lator? In quantum theory is to replace the coordinate 
of the material x and its momentum p  are given by 
operators ˆx x x→ ≡  and ˆ /p p i x→ = − ∂ ∂ . By 
such replacement the expression of classical point 
total energy E  has to be replaced by operator ex-
pression named “Hamiltonian” or the total energy 
operator Ĥ

2
2

2 22 2 2
2 2

2

2 2

ˆ .
2 2 2 2

pE x
m

m mp x x H
m m x

χ

ω ω

= + =

∂= + → − + =
∂



In quantum mechanics the state of a quantum 
particle is described by the wave function ( )xψ  
obeying the equation to the name of E. Schrödinger:

22 2
2

2 ( ) ( ) or
2 2

m x x E x
m x

ω ψ ψ
 ∂− + = ∂ 


(5)
ˆ ( ) ( ).H x E xψ ψ=

The square of the wave function ( ) ( )x x dxψ ψ∗

determines the probability of detection of the clas-
sical coordinates of the particle in the interval dx 

around the point x, if such experiment will be deli-
vered. Therefore,

( ) ( ) 1.x x dxψ ψ
∞

∗

−∞

=∫
We write several formal properties of the quan-

tum oscillator [5]. After the change the variables

xς β= , mωβ =


, 2Eλ
ω

=


,

the Schrödinger equation (5) takes the form
2

2
2 ( ) ( )d

d
ς ψ ς λψ ς

ς
 

− =  
.

Of course, instead of ( )ψ ς could be used

( )/x mψ ω  , but it is inconvenient. The expres-

sion in brackets resembles an algebraic difference of 
squares. That is why is seems to be the natural to use 
the operators

1ˆ
2

α ς
ς

 ∂= + ∂ 
, 1ˆ

2
α ς

ς
+  ∂= − ∂ 

.

By means of these operators the Schrödinger 
equation may be rewritten the form

( ) ( ) ( )ˆ ˆ ˆ ˆ ,
2

Eω α α αα ψ ς ψ ς+ ++ =

(6)
( )ˆ ˆ ˆ ˆ ˆ .

2
H ω α α αα+ += +

Under additional condition

( ) ( ) 1dψ ς ψ ς ς
∞

∗

−∞

=∫
this equation has many solutions, determined by the 
index 0,1,2,...n =  Let us denote these solutions 

through ( )nϕ ς

2

2( ) ( ) ,nn H e
ς

ϕ ς ς
−

=
(7)( ) 2 21

( ) .
2 !

n n

n nn

dH e e
dn

ς ςς
ςπ

−−
=

Function ( )nH ς  is called the Hermit polynomi-
als. To each solution ( )nϕ ς  its own parameter E  
corresponds, determing permissible discrete valu-
es of the oscillator energy ( )1/ 2nE nω= + , if on it 
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there are no external forces. Functions (7) are found 
to be real and possessing the following properties

ˆ ( ) ( 1),n n nαϕ ς ϕ ς= −

(8)
ˆ ( ) 1 ( 1),n n nα ϕ ς ϕ ς+ = + +

( ) ( ) .nnn n dϕ ς ϕ ς ς δ
∞

′
−∞

=′∫

It follows from these equations that

ˆ ˆ ( ) ( )n n nα αϕ ς ϕ ς+ = .

The operator ˆ ˆn̂ α α+=  denomination is operator 
number. With its help the photons operator number 
will be constructed. If the wave function ( )ψ ς  is not 
the same with any ( )nϕ ς , the number of photons 
in such state have not a specific meaning, and one 
can only talk about their average quantum number 

ˆ ˆ( ) ( )n n dψ ς ψ ς ς
∞

∗

−∞

= ∫ . In General, if the oscillator 

is acting by externally force, then the wave func-
tion can essentially depends on time. Instead of 
equation (5), its behaviour is now defines a tempo-
rary Schrödinger equation:

( , ) ˆ ( , )x ti H x t
t

∂Ψ = Ψ
∂

 .

3. THE PROCEDURE 
OF QUANTIZATION OF THE 
ELECTROMAGNETIC FIELD

We will say that some set of parameters de-
scribes the state of any material object in some mo-
ment of time 0t = , if this set is sufficient to the pre-
diction of the results of any potential experiment 
carried out on this object in a future time 0t > . 
In classical mechanics the state of a point particle 
in the one-dimensional space is described by coor-
dinate x  and momentum p . In the transition from 
classical mechanics to the quantum one the coordi-
nate of a particle and the momentum are replaced by 
the corresponding operators. A similar situation ari-
ses in the field theory. In classical theory of electro-
magnetic field the state of the field is determines by 
its amplitude ( , )A tν r . It means that by the transi-
tion from classical optics to quantum one the field 
amplitude has to be replaced with an operator ex-

pression. The state of any system in quantum theory 
describes the wave function ψ  satisfying 
to Schrödinger equation. The explicit form of the 
Hamiltonian in this equation will be predicted by 
procedure of quantization of classical oscillator 
with the replacement of electromagnetic energy by 
its quantum analogue. In classical physics, the ener-
gy of plane electromagnetic waves occupying the 
volume V  is described by formula:

2 2 2( , ) ( , ) ( , )
8 8 4V V V

E t H t E tE d d d
π π π

= + =∫ ∫ ∫rr r rr r .

Here is taken into account that at plane electro-
magnetic waves the energy falling on the electric 
and magnetic components is equal to each other. 
Let us assume that electromagnetic field is placed 
in a cube with edge L  and volume 3V L= . At the 
borders of the cube one use the periodic boundary 
conditions ( ) ( ) ( )exp exp exp 1.x y zik L ik L ik L= = =  
In the case, using (2) and (3), we obtain

( )
2

2
2 ,  .

4
k

k k
V

E ck
c λ λ λ λ

λ

ω γ α α α α ω
π

∗ ∗= + =∑ k k k k
k

(9)

This form of energy emphasizes its reality. The 
transition to infinite volume carries out by proce-
dure V →∞ . Comparison of expressions (6) and (9) 
indicates that the quantization procedure demands 
the replacement

22 ,k
k

c
V

πγ
ω

→ 

 

1ˆ ,
2λ λ λ

λ

α α ς
ς

 ∂→ = + ∂ k k k
k

(10)
1ˆ .
2λ λ λ

λ

α α ς
ς

∗ +  ∂→ = − ∂ k k k
k

At the same time, vector potential (3) and total 
field energy (9) are replaced by operator expressions

( )ˆ ˆ ˆ( , ) ,i ikct i ikct
kA t e eν ν

λ λ λ
λ

γ α α− + − += +∑ kr kr
k k k

k
r

(11)

( )ˆ ˆ ˆ ˆ ˆ .
2

kH λ λ λ λ
λ

ω α α α α+ += +∑ k k k k
k



View of the Schrödinger equation containing this 
operator Ĥ  (Hamiltonian) was given above
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ˆ (V) (V)H Eψ ψ= .

The solution to this equation is the product of 
functions

( ) ( )nλ λ
λ

ϕ ϕ ς=∏ k k
k

Nς , 1
2kE nλ λω  = +  k k ,

E E λ
λ

= ∑ k
k

.

Here, the multidimensional vector ς  means a set 
of arguments ...., ,...λςk  with varyous ( ),λk , the 
multidimensional vector N  means a set of numbers 
..., ,...n λk . Function ( )nλ λϕ ςk k  satisfies the equation

( ) ( ) ( )ˆ ˆ ˆ ˆ
2

k n E nλ λ λ λ λ λ λ λ λ
ω α α α α ϕ ϕ ϕ ϕ+ ++ =k k k k k k k k k
 .

The energy ( )1/ 2kE nλ λω= +k k  corresponds 

to each solution  ( )nλ λϕ ϕk k . Since we are always 
interested in energy difference

/ 2 ,k kE n λ
λ λ

ω ω− =∑ ∑ k
k k
  (12)

then on the amount / 2k
λ

ω∑
k
  one could not pay at-

tention. The sum in the left side of equality (12) is 
energy full electromagnetic fields associated with 
the specific set of numbers n λk  that is, a specific set 
of photons, each with energy kω . Thus n λk  means 
number of photons in the mode ( , )λk .

So, the photon ( )1n λ =k  of the mode ( , )λk  is the 
state of the electromagnetic field to which corre-
sponds the wave function

( ) ( )
( )

2
1

1/4 2

1 (V )exp / 2

2 exp / 2 .

Hλ λ λ

λ λ

ϕ ς ς

π ς ς−

= − =

= −

k k k

k k

(13)

This is the answer to the question in the title of 
this article. In infinite space, such states in its pure 
form cannot exist, as well as in the classical phys-
ics strictly monochromatic waves cannot exist. It’s 
impossible just because monochromatic waves have 
no boundaries. But researching their properties is 
extremely fruitful, as soon as any really existing 
electromagnetic field can be represented in the form 
of their superposition. The same property is pos-

sessed by the photon states. Any realistically state 
of the field can be built of them, as from bricks.

To understand the physical meaning of a func-
tion (13), it is necessary to find out the physical 
meaning of arguments λςk . The procedure of quan-
tization of fields in accordance with (10) demands 
the replacement

cos
2 2k

Aλ λ λ
λ λ

α α ϑ ς
γ

∗+ = →k k k
k k

(14)
sin .

2 2k

Aiλ λ λ
λ

λ

α α ϑ
ςγ

∗− ∂= →
∂

k k k
k

k

The argument of the wave function λςk  corre-

sponds to “classical value” cos / 2kA λ λϑ γk k . The 

word “classical” we take in inverted commas, be-
cause kγ  contents . Of course, it would be possible 

to write in such form ( )cos / 2kA nλ λ λϕ ϑ γk k k , but 

this is inconvenient, so one is writing ( )nλ λϕ ςk k . 

According to quantum principles, construc-

tion ( ) 2
n dλ λ λϕ ς ςk k k  determines the probability 

about detection argument λςk  (or “classical” con-

struction cos / 2kA λ λϑ γk k ) in the interval d λςk , if 

such experiment will be delivered. In such a way 
one founds the distribution function of the “classi-
cal” variable cos / 2kA λ λϑ γk k .

We consider the Fourier transform (indices k, λ 
are omitted)

( ) ( )1 ,
2

ie dηςϕ ς ϕ η η
π

∞

−∞

= ∫ 

( ) ( )1 .
2

ie dηςϕ η ϕ ς ς
π

∞
−

−∞

= ∫


From the properties of the Fourier transforma-
tion it follows that this procedure is accompanied 
by replacement

( ) ( )ϕ ς ϕ η↔  , iς
η
∂↔
∂

, i η
ς
∂− ↔
∂
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Therefore, instead of (14) as quantization rules 
of the electromagnetic fields can serve as the 
following:

cos ,
2 2k

A iλ λ λ
λ

λ

α α ϑ
ηγ

∗+ ∂= →
∂

k k k
k

k
(15)

sin .
2 2k

Ai iλ λ λ
λ λ

α α ϑ η
γ

∗−
= →k k k

k k

Thus, the argument of the function ( )λϕ ηk  meets 

the value of the classic sin / 2kA λ λϑ γk k . Con-

struction ( ) 2
λϕ ηk  determines the probability distri-

bution “classical” values sin / 2kA λ λϑ γk k . Be-

cause the function ( )λϕ ηk  follows from ( )λϕ ςk  by 

a Fourier transformation, then according to (13)

( ) ( )1/4 21 2 exp / 2iλ λ λϕ η π η η−= −k k k .

So, for one-photon states we have:

( ) ( )2 2 221 expλ λ λϕ ς ς ς
π

= −k k k ,

( ) ( )2 2 221 expλ λ λϕ η η η
π

= −k k k .

These are even functions of their arguments, so 
quantum averages

( )

( )

2

2

0

d

d

λ λ λ λ λ

λ λ λ

ς η ς ϕ ς ς

η ϕ η η

∞

−∞

∞

−∞

= = =

= =

∫

∫

k k k k k

k k k

turned to zero. In other words, in one-photon states 

the quantum average cos sin 0A Aλ λ λ λϑ ϑ= =k k k k  

is vanishing. For this reason, the classical parame-
ters A λk  and λϑk  cannot describe the single-pho-
ton states. Let’s emphasize separately and once 
again that the single-photon state of the electromag-
netic field do not has such attributes as amplitude 
A λk  and phase λϑk . 

But such property is inherent not only 
to one-photon states, but also to any states with pre-
cisely defined number of photons (Fock states). Re-

ally, after averaging over any defined by func-

tion ( )nλ λϕ ςk k  the quantum average of a vector 

potential (11)

( )
ˆ (r, )

ˆ ˆ 0i ikct i ikct
k

A t

e e e

ν

ν
λ λ λ

λ
γ α α− + − +

=

= + =∑ kr kr
k k k

k

turns to zero, which follows from the relations (8). 

But the quantum average ˆ ( , )A tν r  cannot be van-

ish, if we are dealing with superposition of wave 
functions with different numbers n λk . It is among 
these superposition’s necessary to find the wave 
function describing the quantum state that most 
closely approximates a classic field. Such a super-
position is (again, we omit the indices k ,λ ):

( ) ( )
2

2

0 !

n

n
e n

n

α αϕ ς α ϕ ς
∞−

=

= ∑ ,

( ) ( ) 1dϕ ς α ϕ ς α ς
∞

∗

−∞

=∫ ,

where α is any number. It is customary to speak, 
that this superposition describes the “quantum co-
herent” state. It is easy to see that ( )α̂ϕ ς α =
αφ(ς|α). If the operator α̂  to describe in explicit 
form (10), we get the equation

( ) ( )1
2

ς ϕ ς α αϕ ς α
ς

 ∂+ = ∂ 
, the solution of 

which is a function

( ) ( )2

1/4 21exp 2 .
4 2

α α
ϕ ς α π ας ς

∗
−

 + = − + −
 
 

(16)

When working with quantum coherent states the 
following integral is useful:

( )
2

2exp exp
4

d π δδς βς ς
β β

∞

−∞

 
− =   ∫ .

Now, it is clear that ( ) ( ) 1dϕ ς α ϕ ς α ς
∞

∗

−∞

=∫ .

We use the Fourier transform
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( ) ( )

( )2

1/4 2 2

1
2

1exp 2 .
4 2

ie d

i

ηςϕ η α ϕ ς α ς
π

α α
π α αη η

∞
−

−∞

∗
−

= =

 + = − + − −
 
 

∫

It follows from (16) and (17) that

( )
2

2 1 exp ,
2

α αϕ ς α ς
π

∗  += − −     
(18)

( )
2

2 1 exp .
2i

α αϕ η α η
π

∗  −= − −     



If  one use the ideas ( )exp iα α ϑ= and

( )exp iα α ϑ∗ = − , then the most probable values of 

exς  and exη  according to (14) and (15) will be:

( )cos / 2 2 cos
2ex k ex

A α ας ϑ γ α ϑ
∗+= = = ,

( )sin / 2 2 sin
2ex k ex

A
i

α αη ϑ γ α ϑ
∗−= = = .

At 2 k Aγ α =  from these ratios, the expressions 

followed which are valid for classical waves.
Next, we need an auxiliary equality

( ) ( )

( ) ( )

ˆ ˆ

ˆ

n d

d

ϕ ς α α αϕ ς α ς

α ϕ ς α α ϕ ς α ς

∞
∗ +

−∞
∞

∗ +

−∞

= =

= =

∫

∫

( ) ( )ˆ  dα αϕ ς α ϕ ς α ς αα
∞

∗ ∗

−∞

= =∫ .

Because the averaging on coherent states gets

( )ˆ ( , ) i ikct i ikct
kA t e e eν ν

λ λ λ
λ

γ α α− ∗ − += +∑ kr kr
k k k

k
r ,

( )

1( , ) ( , )

sink k
k

E r t E r t
c t

e E kr kct

ν ν

ν
λ λ

λ
ϑ

∂= − =
∂

= − +∑ ,

22 kE
Vλ λ
π ω α= −k k
 ,

so for these states, taking into account the auxiliary 

equality written in the form nα = , one is find-

ing 2 / 8 kE V nλ λπ ω=k k . Introducing the concept 

of effective amplitude of the field / 2E Eλ λ=k k , 

we conclude 2 / 4 kE V nλ λπ ω=k k . So, if the elec-

tromagnetic wave is in a quantum coherent state, it 
does not possess a fixed number of photons, but its 
energy can be calculated as a quantum formula and 
classical one.

A quantum averages and the most probable pa-
rameters of the electromagnetic field coincide with 
their classical analogues, if the free field is in quan-
tum coherent state. But that doesn’t mean that each 
experiment will give the values of classical parame-
ters. According to the distributions (18), there will 
be dispersion of points. The magnitude of this dis-
persion is determined by the dispersions of the dis-
tributions (18), which do not depend on the ampli-
tudes of the fields. For this reason, if the amplitudes 
are large, then the dispersions can be neglected.

In this case, a flat electromagnetic wave, find-
ing in the quantum coherent state, is described well 
by the classical theory. But that doesn’t mean, that 
the result of the interaction of such waves with the 
environment always admits a classical description. 
Such example is set out below. Once again, empha-
size that large value of the quantum coherent field 
by itself is not enough to use classical Maxwell 
equation.

It is useful to notice that in Fock state standing 
field with a large number of photons can to give 
a very high energy and destructive force, but the 
classical description of such a field does not exist.

4. THE INTERACTION OF THE 
ELECTROMAGNETIC FIELD WITH THE 
ENVIRONMENT

We will discuss examples showing that the evo-
lution as strong as one wants and being in the quan-

tum coherent state ˆ( , ) 0A t ≠r  electromagnetic 

fields may not obey the laws of classical physics.
Consider a system consisting of excited atom 

and quantized electromagnetic field interacting each 
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to another. For the sake of simplicity, we suppose, 
that the atom has one valence electron and two ener-
gy levels: ground and excited. The wave function of 
an electron in an excited atom denote by ( )

exjψ r , 

in the ground state via ( )
gj

ψ r . Spin effects will 
neglect.

Let the atom, placed in an excited state- ( )
exjψ r  

undergoes action of the single –mode ( )0 0λk  radia-

tion, placed in a quantum coherent state ( )ϕ ς α . 

As a result of the scattering process, the total wave 
function atom-field system takes the form

(t) (t) ( ) (t) ( ).
ex ex g gj j j jf fψ ψΨ = +r r (19)

Function (t)exf  describes the coherent channel of 
scattering, as a result of which the scattering atom 
remains in the initial excited state. Function (t)gf  

describes the scattering channel, as a result of which 
the atom of changes its state on ground state. This 
channel will be called incoherent. Since in the initial 
state electromagnetic field has “quantum average” 

value of the amplitude ˆ ( , )A tν r , then after scatter-

ing this construction will not turn to zero. Below, in-

stead of operator ( )ˆ ,A tν r  one will use the operator 

of tension of the electric field

( )

ˆ1 ( , )ˆ ( , )

ˆ ˆ .i ikct i ikct
k

A tE k t
c t

i e k e

ν
ν

ν
λ λ λ

λ
γ α α− + − +

∂= − =
∂

= −∑ kr kr
k k k

k

r

“Quantum average” of electric tension of elec-
tromagnetic field after scattering is calculating by 
conventional rule

ˆ ˆ( , ) ( , )

ˆ ( , )

ˆ ( , )

ex ex

g g

ex j ex j

g j g j

E t E t

f E t f

f E t f

ν ν

ν

ν

ψ ψ

ψ ψ

= Ψ Ψ =

= +

+ =

r r

r

r

(c) (n)

ˆ ˆ( , ) ( , )

( , ) ( , ).

ex ex g gf E t f f E t f

E t E t

ν ν

ν ν

= + =

= +

r r

r r
(20)

Here in explicit form the function (t)Ψ  describ-
ing by expression (19) is shown, with the help of 
which the quantum averaging is performed, and it is 

taken into account that the operator ( )ˆ ,E tν r  does 

not change the mutually orthogonal j jψ ψ ′ =  

( ) ( )j j jjψ ψ δ∗
′ ′= =∫ r r  and normalized per unit the 

wave atoms functions. For these reasons, atomic 
functions fall out of this formulas, as well as fall out 
the interference term

ˆ ( , ) 0
ex gex j g jf A t fνψ ψ =r .

It is important to note that interference term 
turns to zero because of orthogonality of atomic 
functions, which eliminates the “quantum interfe-
rence terms” of the electromagnetic field. The clas-
sical physics does not possess such property. Let’s 
to say that coherent and incoherent channels of scat-
tering are not quantum incoherent. But classical co-
herence in the form of summation of amplitudes 
with according to (20) is retained. From the coher-
ent scattering channel the process of stimulated ra-
diation that changes the state of the scattering atoms 
fall out. Thus, it should be distinguished two types 
of coherence: “quantum” depending on phase of full 
wave function of the system, and “classical”, deter-
mined by the phase of averaged amplitude of the 
field. At the process of averaging the quantum phas-
es disappear.

Suppose now we are interested in the energy 
characteristics of the scattered field, describing the 
“quantum averages” from the bilinear combinations 
of the field operators

ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )E t E t E t E tν ν ν ν= Ψ Ψ =r r r r

(21)ˆ ˆ( , ) ( , )

ˆ ˆ( , ) ( , ) .

ex ex

g g

ex j ex j

g j g j

f E t E t f

f E t E t f

ν ν

ν ν

ψ ψ

ψ ψ

= +

+

r r

r r

Here again and for the same reason there is no 
cross term. Both terms are positively determined. 
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Thus, the energy characteristics of the scattered 
field are determined independently by two channels 
of reactions and then algebraically add up. Accord-
ing to (21) the interference between channels is ab-
sent. Very important is to note that there is no inter-
ference between placed in the incoherent channel 
processes of induced radiation and scattering pro-
cesses that do not change states of the atom sys-
tem. In this sense, incoherent properties of induced 
processes, which rarely stressed, can significant-
ly change the macroscopic pattern of the scattered 
field.

The value of the averaged bilinear structures 
(21) it is convenient to estimate using the well-
known inequality

ˆ ˆ ˆ ˆ ˆ ˆ ,BB BB BB

true for any operators and any procedure of averag-
ing. Applying this inequality to both terms equality 
(21), we obtain the lower estimate for the research 
construction

(c) (c) (n) (n)

ˆ ˆ( , ) ( , )

( , ) ( , ) ( , ) ( , ).

E t E t

E t E t E t E t

ν ν

ν ν ν ν+





r r

r r r r
(22)

If only the non-coherent channel (and the pro-
cesses of induced radiation) are absent or on any 
reason the coherent channel of scattering is absent, 
the energy of the scattered electromagnetic field is 
determined by the squared of scattering amplitude, 
which resemble equality, at in classic field. In other 
words, the classical physics can correctly describe 
the scattering process of resonant radiation only 
in exceptional cases. In general, if the scattering 
radiation is almost classical and is in a quantum 
coherent state the scattered radiation loses this pro-
perty. According to (22), the energy of the scat-
tered radiation consists of two terms that are de-
fined by different channels of scattering. Energy 
characteristics of these channels summed. “Quan-
tum coherence states” do not obey such properties. 
One can say that in the scattered radiation, along 
the quantum coherent component the “Fock’s” 
component appears. The value of “Fock’s” compo-
nent can reach rather hundred percents of the to-
tal radiation. Such radiation in the representations 
of classical physics can’t be described. This is the 
case with Fresnel reflection of resonance radia-
tion from excited media [6]. They say that in these 

cases we have dealing with the discrepancy bet-
ween the predictions of the classical and quantum 
physics at a macroscopic level.

5. CONCLUSION

Pay attention to the equality

( ) ( )2

1/4 21exp 2
4 2

α α
ϕ ς α π ας ς

∗
−

 + = − + − =
 
 

( )
2

2

0
,

!

n

n
e n

n

α α ϕ ς
∞−

=

= ∑

which is indicating that the closest to the classical 
presentation the concepts of “quantum coherence 
states” of electromagnetic field can be represented 
as a sum of photons (Fock states) states having no 
classical analogues. It is a “quantum coherent state” 

( )ϕ ς α can be described verbally with the help of 

concepts “amplitude”, “phase” and “dispersions” of 
these quantities, then as photons (Fock) states 

( )nϕ ς  of these attributes lack. In Fock states we 

use the adoption of a “photon”. There is also an in-
verse relationship [7]:

( ) ( )
21

221
!

n

n e d
n

ααϕ ς ϕ ς α α
π

∗ −
= ∫∫ ,

( ) ( )2 Re Imd d dα α α= ,

which is indicating that photons (Fock) states, in-
cognizant the concepts of “phase” and “amplitude”, 
can be present in the form of a superposition of 
“quantum coherent states”, which are characterized 
by such concepts. One can speak that we solve the 
problem in photon (Fock) or in a coherent rep-
resentation. Therefore, the objective characteristic 
of the electromagnetic field is its state described by 
the wave function. For depending on the mathema-
tical background chosen by us, the specific view of 
this function can be strongly various. It may be rep-
resenting by the series of functions ( )nϕ ς  as well 

as functions ( )nϕ ς .
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The attributes such as amplitude, phase, and 
number of photons, are inherent to concrete rep-
resentations and are not invariant with respect to the 
choice that depends on us. Thus, these attributes do 
not follow absolutely sense and do not possess uni-
versal meaning.

The need for quantization of the electromagne
tic field follows from logical considerations and 
from different results of calculations using quan-
tized and classical fields that qualitatively demon-
strated above on some examples.
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