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ABSTRACT

Hyper-spectral sensors take measurements in the 
narrow contiguous bands across the electromagnetic 
spectrum. Usually, the goal is to detect a certain ob-
ject or a component of the medium with unique 
spectral signatures. In particular, the hyper-spectral 
measurements are used in atmospheric remote sens-
ing to detect trace gases. To improve the efficiency 
of hyper-spectral processing algorithms, data reduc-
tion methods are applied. This paper outlines the di-
mensionality reduction techniques in the context of 
hyper-spectral remote sensing of the atmosphere. 
The dimensionality reduction excludes redundant 
information from the data and currently is the in-
tegral part of high-performance radiation transfer 
models. In this survey, it is shown how the principal 
component analysis can be applied for spectral ra-
diance modelling and retrieval of atmospheric con-
stituents, thereby speeding up the data processing 
by orders of magnitude. The discussed techniques 
are generic and can be readily applied for solving 
atmospheric as well as material science problems.

Keywords: passive remote sensing, hyper-spec-
tral data, principal component analysis, full-physics 
machine learning, trace gas retrieval

1. INTRODUCTION

Hyper-spectral sensors record the transmitted or 
reflected radiance in the narrow contiguous bands 
across the electromagnetic spectrum. The goal is 
to detect a certain object or a component of the 

medium, which has a unique spectral signature, i.e. 
a fingerprint. Hyper-spectral imaging has emerged 
as one of the most powerful technologies in vari-
ous fields including astronomy, mineralogy, agricul-
ture, medicine and chemistry. For instance, hyper-
-spectral data (sometimes referred to as hypercube 
data or as an image cube) are used in astronomy and 
Earth remote sensing to create a spatially-resolved 
spectral image allowing more accurate recogni-
tion and classification of the objects in the instru-
ment field of view. At the same time, significant 
data storage and computational power are required 
to process the hyper-spectral information and to re-
trieve a certain parameter of the scattering medium.

In this survey we are focused on hyper-spec-
tral remote sensing of the atmosphere. The pas-
sive atmospheric composition sensors (ACS) de-
tect and record the radiance reflected by the Earth 
atmosphere in the ultraviolet (UV), visible (VIS), 
and thermal infrared (IR) regions. The informa-
tion about the atmosphere is then retrieved from the 
spectral data by using the so called atmospheric pro-
cessors, i.e. codes which are specifically designed 
to invert ACS measurements [1]. Extracting the in-
formation about geophysical parameters (level‑2 
data) from spectral radiance distributions (level‑1 
data) turns out to be a major computational chal-
lenge and requires high performance computing 
(HPC) [2].

The recent developments in optics, sensor de-
sign and measurement techniques significantly im-
prove the characteristics of hyper-spectral ACS, 
such as the spatial resolution and the signal-to-noise 
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ratio. Table shows a comparison between previ-
ous generation instruments like the Global Ozone 
Monitoring Experiment (GOME and GOME‑2) 
and the newest, the TROPOspheric Monitoring In-
strument (TROPOMI) [3] on board of the Coperni-
cus Sentinel 5 Precursor (S5P) satellite. The spatial 
resolution of TROPOMI is two orders of magni-
tude higher, providing 21 million level‑1B spec-
tra per day, i.e. almost 8 milliards spectral points, 
while the signal-to-noise ratio in the UV/VIS chan-
nels reaches the values of about 1500. Fig. 1 shows 
the example of a retrieved map of tropospheric ni-
trogen dioxide (NO2) from S5P measurements (the 
data is freely available at https://s5phub.copernicus.
eu/dhus). Observe that air pollution emitted by big 
cities and shipping lanes is clearly visible. With the 
high resolution data it is possible to detect air pollu-
tion over individual cities as well as to locate where 
pollutants are being emitted, and so, identifying pol-
lution hotspots. Such high resolution satellite re-
mote sensing observations are extremely useful for 
diagnosing the impact of atmospheric constituents 
on a global scale, in particular, allowing detection of 
small-scale sources, and increasing the fraction of 

cloud-free observations. However, the high spatial 
resolution of the state-of-the-art ACS results in very 
challenging data volumes to be processed – ​240 TB 
(terabyte) per year of level‑1 data.

In fact, the amount of satellite data increases 
faster than the computational power [4]. The remote 
sensing data is recognized as Big Data [5] since 
it satisfies Doug Laney’s 3V criterion: significant 
growth in the volume, velocity and variety. New 
efficient techniques have to be developed for next 
generation atmospheric processors to cope with 
these high efficiency requirements.

The radiative transfer modelling (RTM) is the 
key component and the major performance bot-
tle-neck in the atmospheric processors. Further-
more, the hyper-spectral RTMs involve a hierar-
chy of nested computational loops [6] as shown 
in the pseudo-code in Fig. 2. Recent surveys such as 
those provided by V. Natraj [7] and D. Efremenko 
et al. [8, 9] showed that a significant performance 
enhancement can be achieved by optimizing the 
framework in which the radiative transfer solver is 
called rather than accelerating the RTM solver it-
self. In fact, the efficiency of monochromatic radia-

tive transfer solvers hardly 
can be further improved 
[10]. Several attempts 
have been made to opti-
mize loops over ground 
pixels and geometry (see, 
e.g., [11, 12, 13, 14] and 
references therein). Cur-
rently the loop over wave-
lengths (which expresses 
the hyper-spectral pro-
cessing) remains the most 
computationally demand-
ing part.

The essential part of 
the Big Data analysis is 
the dimensionality reduc-

Table. Characteristics of Atmospheric Composition Sensors

Instrument GOME GOME‑2 TROPOMI

Platform ERS‑2 MetOp (A, B, C) Sentinel 5 Precursor

Spatial resolution (km2) 320x40 80x40 7x3.5

Amount of level‑1 data 
(TB per year) 0.8 4.2 240

Operational 1995–2011 2006-present 2017-present

Fig. 1. Example of 
Sentinel‑5P tropo-
spheric nitrogen 
dioxide (NO2) 
measurements on 
1.04.2019 (data is 
freely available at 
https://s5phub.co-
pernicus.eu/dhus)
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tion procedures which are related in the context of 
RTMs to the loop over wavelengths. The principal 
component analysis (PCA) is one of the famous rep-
resentatives of them. PCA was proposed in 1901 by 
K. Pearson [15] and today has become an integral 
part of hyper-spectral RTMs.

In this regard, many efforts have been made 
to develop hyper-spectral RTMs which explicitly 
take into account the interdependency and statistical 
relations between level‑1 and level‑2 data [16]. The 
motivation of this survey is to present basic con-
cepts of dimensionality reduction for design of at-
mospheric processors in a systematic way and to put 
in one context recent developments in this field.

2. DIMENSIONALITY REDUCTION

2.1. Heritage from the k-Distribution 
Technique

The techniques of dimensionality reduction in at-
mospheric science and astrophysics were preceded 
by methods which exploit a strong interdepen-
dency in the hyper-spectral data, although do not 
use PCA explicitly. Ambartsumian [17] noted that 
the transmission within a spectral interval does not 
dependent on the line-by-line (LBL) variation of 
the absorption coefficient k with respect to wave-
lengthλ , but rather on the distribution of absorp-
tion coefficient within the spectral interval. Such 
concept is called the k-distribution approach. It is 
based on the cumulative frequency distribution of 
k, namely, ( )G k ; as a matter of fact, the inverse dis-
tribution ( )k G  is the k-distribution function. Since 
( )G k  is a smooth function and ( )λk  has a strong 

variation with respect to λ , it is beneficial from 
the numerical point of view to replace the integra-
tion in λ -space by that in G-space (less number of 
quadrature points for numerical integration is re-
quired). This method was extended by Goody et al. 
[18] to the cases of inhomogeneous atmosphere as-
suming that there is a correlation between k-distri-
butions at different pressure levels, and that is the 
correlated-k distribution method. Other techniques 
(e.g. exponential sum fitting [19], spectral map-

ping [20], k-binning approach [21], opacity sam-
pling method [22], multi-dimensional k-distribu-
tion method [23], and fast k-distribution models 
[24, 25]) use similar ideas although based on a more 
elaborative mathematical basis. In [26], a modifica-
tion of the k-distribution technique was considered, 
in which the integration is performed in the origi-
nal λ  -space. In [27], an empirical procedure based 
on uniform spectral grids was proposed for choos-
ing the most representative spectral points in LBL 
computations. Together, the studies related to the 
k-distribution function outline that the hyper-spec-
tral radiances can be modelled by much fewer num-
ber of monochromatic computations than required 
by the LBL-framework, thereby providing a basis 
to dimensionality reduction of the problem.

2.2. Basic Concept of Dimensionality 
Reduction

In simple words, dimensionality reduction means 
representing the initial data set with less number of 
parameters than it is initially represented. It can 
be considered as one of the lossy data compres-
sion paradigms [28]. Dimensionality reduction is 
crucial for stable and high-performance processing 
of spectral measurements. It excludes redundant in-
formation from the initial dataset, reduces the num-
ber of independent parameters and improves the ef-
ficiency of machine learning.

There is a distinction between linear and non-lin-
ear techniques for dimensionality reduction. A more 
detailed review can be found in [29, 30, 31, 32] 
and references therein. Linear and non-linear tech-
niques have been inter-compared in [33]. Results 
of these numerical experiments reveal that non-lin-
ear techniques perform well on selected artificial 
tasks. However, they hardly outperform PCA on re-
al-world tasks. Similar conclusions were reported 
in [34], where several methods for dimensional-
ity reduction were inter-compared in the context of 
accelerating radiative transfer performance. Bear-
ing in mind that no obviously superior method has 
emerged in the benchmarking studies (increasingly 
time-consuming and sophisticated dimensionality 

Fig. 2.  Hierarchy of computational loops, in which the radiative transfer solver is called
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reduction techniques lead to more accurate results, 
and vice versa) our analysis will be limited with the 
classical PCA.

2.3. Principal Component Analysis

Although the dimensionality reduction tech-
niques are well-known and covered by many sta-
tistical libraries (e.g., scikit-learn [35] for Python), 
we make a short mathematical exposition to put the 
above considerations in a proper context. For clar-
ity, we specify sizes of matrices using the nota-
tion rows columns×∈ . Let ( ) ( ) ( )( )1 2, ,...,λ λ λ= Wy y yy , 

1×∈ WRy , be a row-vector of atmospheric radiances 
at W  wavelengths { } 1, ,

λ
= …w w W . A set of S  spectra are 

assembled into a matrix ×∈ S WRY  whose i -th row 
is iy .Then, iy  can be represented in a new basis sys-
tem as follows:

1
.

=

= +∑
W

i ik k
k

ty y f

Here, 
1

/
=

= ∑
S

i
i

Sy y , 1×∈ WRy  is the sample mean 

of the spectra (the average spectrum), ikt  is the thk  
coordinate of the vector iy  in the new basis sys-
tem and ( ) ( ) ( )( ) 1

1 2, ,...,λ λ λ ×= ∈ W
k k k k Wf f f Rf  is 

the thk  basis vector. Noting that high-dimensional 
real data are often situated on or near a lower-di-
mensional manifold, the spectrum iy can be pro-
jected onto the K -dimensional subspace ( <K W ) 
as follows:

1
,

=

≈ +∑
K

i ik k
k

ty y f  	 (1)

or in matrix form for the initial dataset:

,≈ +Y Y TF  

where { }, , ×= … ∈ S WRY y y ,

 { }T
1 2, ,..., ×= ∈ K W

K RF f f f , ×∈ S KRT  is the matrix 

whose entries are { } 1, ,

1, ,

= …

= …

k K
ik i S

t . Hereinafter the super-

script T  stands for ‘’transpose’’. The transforma-
tion (1) can be done using dimensionality reduc-

tion techniques, such as PCA [15]. In the latter, 
basic vectors kf  in (1) are referred to as ‘’principal 
components’’ (PCs) or empirical orthogonal func-
tions (EOFs) and are taken as K  eigenvectors re-
lated to the K  most significant eigenvalues of the 

covariance matrix ( )cov , ×∈ W WRY Y . The coordi-

nates ikt  in the new coordinates system and the cor-
responding matrix T  are called ‘’principal compo-
nent scores’’.

3. PRINCIPAL COMPONENT-BASED 
RADIATIVE TRANSFER MODEL FOR 
HYPER-SPECTRAL SIGNALS

The most conceptually simple approach uses 
the training data set of spectra in order to establish 
a set of EOFs by using PCA and then to restore hy-
per-spectral signal in W spectral points by using K 
monochromatic radiances. Naturally, we have K<W.

The theory of PCA briefly discussed in the previ-
ous section reveals a linear relationship between PC 
scores and monochromatic radiances:

( ) ( ) ( ) ( )1 1 ... .λ λ λ λ= + + + K Kt ty y f f  	 (2)

Hence, for a given set of K EOFs and K spectral 
points it is possible to obtain a closed linear system 
of K equations:

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1 1

2 1 1 2 2

1 1

... ,

... ,
...

... .

λ λ λ λ
λ λ λ λ

λ λ λ λ

 = + + +


= + + +


 = + + +

K K

K K

K K K K K

t t

t t

t t

y y f f

y y f f

y y f f

 	 (3)

The key point here is that the radiance values 
in K spectral points are represented through the 
same EOFs. Then, by solving (3) we obtain PC 
scores 1,... Kt t , and, by using (2), the full spectrum 
in W spectral points can be readily restored.

This approach requires a set of precomputed 
EOFs which is derived from a training data set of 
simulated or measured spectra. Fig. 3 shows the ex-
ample of the PCA applied to the dataset of spec-
tra computed in the Hartley-Huggins band used for 
ozone retrieval. The data set consists of 105 spectra. 
The following parameters are varied for the gener-
ation of reflectance spectra: the solar zenith angle, 
the viewing zenith angle, the relative azimuthally 
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angle, the surface albedo, the ozone total column, 
the surface height, and the temperature. The right 
plot in Fig. 3 shows that almost 99.9 % of the vari-
ance in the data can be explained just with 5 princi-
pal components.

To obtain best efficiency, the parameters of 
this scheme, such as K and a set of chosen wave-
lengths, have to be tuned empirically. The num-
ber K  depends on the desired level of variance 
to be captured by the principal components. Sev-
eral semi-empirical rules have been proposed for 
the optimal number of principal components (e.g. 
the broken stick model [36]). However, there is no 
universal rule for the selection of K ; the choice is 
application-specific. 

Regarding the choice of wavelengths, in [37] 
a method is proposed for selecting the location of 
monochromatic wavelengths by using a correla-
tion function. In particular, this method involves the 
following steps:

–  The correlation coefficients are computed for 
the radiance values and then converted to vector an-
gles by an arccosine function;

–  The spectral data is rearranged according 
to the magnitudes of the correlation coefficients;

–   The monochromatic radiances are selected by 
choosing predictors with equal distances in the val-
ues of the correlation coefficients.

The schematic representation of the principal 
component-based hyper-spectral radiative trans-
fer model is shown in Fig. 4. For the input data set 
containing optical parameters of the atmosphere for 
a set of wavelengths, the monochromatic radiative 
transfer solver is called. To obtain the most repre-
sentative dataset, the smart sampling method [38] 
is recommended based on Halton sequences [39]. 
That produces a data set of spectra, which is divided 
into training data set and validation data set. By ap-
plying PCA and the correlation analysis to the train-
ing set, the system of EOFs is computed and a sub-

set of spectral points is chosen (spectral sampling), 
respectively. These two outputs are stored and used 
for computing PC scores for the validation data set. 
The spectra in the full wavelength range are re-
stored using Eq. (2) and the error of this reconstruc-
tion can be estimated. If the error is larger than re-
quired, the number of generated spectra and the 
number of principal components) are increased. The 
main output of the training phase are empirical or-
thogonal functions and spectral sampling (marked 
with red in Fig. 4), which allow to process new 
data in the online phase (as shown in Fig. 5).

In [37], it was noted that the slit function con-
volution operator and the PCA are linear. There-
fore the PC scores of the convolved spectra are lin-
ear functions of monochromatic radiances. Then at 
the training stage, the corresponding weighting fac-
tors of linear dependency are stored together with 
the system of EOFs and spectral sampling. Authors 
claim that for an infrared spectrum ranging from 
650 cm‑1 to 3000 cm‑1 this representation for con-
volved spectra reduces the number of monochro-
matic computations from a few thousands to a few 
hundreds.

Fig. 3. (Left) Mean 
spectrum and first 
three empirical 
orthogonal functions 
computed in the 
Huggins band; (right) 
explained variance in 
percentage as a func-
tion of the principal 
component index

Fig. 4. Schematic representation of the PCA-based radia-
tive transfer model with precomputed empirical orthogonal 

functions – ​offline phase
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The presented approach proved to be effi-
cient and implemented in several packages (e.g. 
PCTRM [37], RTTOV [40] and others [41, 42]). 
The main drawback is that it requires time consum-
ing computations of the training data set.

4. PRINCIPAL COMPONENT 
ANALYSIS IN THE FRAMEWORK 
OF DIFFERENTIAL OPTICAL 
ABSORPTION SPECTROSOPY

In this section we consider the application of 
the PCA in the framework of the differential opti-
cal absorption spectroscopy (DOAS) [43]. DOAS 
is widely used to retrieve the trace gas content. The 
main advantages of this technique are the simplic-
ity and robustness as it is able to filter out the influ-
ence of factors, which are not taken into account 
properly in the RTM. The main idea of DOAS con-
sists in the fact that the absorption caused by gases 
leads to a strong spectral signatures in the spectral 
radiances, while the influence of multiple scatter-
ing and other factors is usually smooth in the wave-
length space. Following [44], the radiance reflected 
by the atmosphere consisting of Ng gas species with 
absorption coefficients ,σ abs g  is represented using 
the weak absorption Beer-Lambert law as

( ) ( ) ( ) ( ),
1

ln RRS ,λ σ λ λ λ
=

= − − −∑
gN

g abs g
g

y S P  	 (4)

where gS  is the number density of gas g along the 

optical path (also referred to as the slant column 
density), ( )λP  is the polynomial term which repre-
sents the impact of Rayleigh and aerosol/cloud scat-
tering as well as the surface reflectance, while RRS 
is a term representing the rotational Raman scatter-
ing [45, 46]. In the conventional DOAS, Sg is re-
trieved through least squares fitting that minimizes 
the residual between the measured (left part of Eq. 
(4)) and simulated (right part of Eq. (4)) radiance 
spectra. Then Sg in converted into the vertical col-
umn density (Ωg) though the air mass factor (AMF). 
The latter is computed at a single wavelength as-

suming a prescribed vertical profile of gas g [47, 
48].

In [49] the modification of the DOAS approach 
was proposed for retrieving the SO2 total column. 
The PCA is applied for the measured spectra in re-
gions with no significant SO2, e.g. the equatorial 
Pacific:

( ) ( ) ( )
1

ln ln .λ λ λ
=

= +∑
K

k k
i

ty y f  	 (5)

In this way, the EOFs capture the variability of 
the data caused by physical processes (i.e. Rayleigh 
and Raman scattering and ozone absorption). In ad-
dition, the features of the instrument (e.g. the in-
strumental degradation, the slit function and mea-
surement artefacts) are implicitly accounted for 
by EOFs. That is the training phase. Then, for pol-
luted regions with SO2, representation (5) will pro-
duce a residual which is associated with SO2 con-
tent. Thus,

( ) ( ) ( ) ( )
2

2

SO
1 SO

ln
ln ln

λλ λ λ
=

∂
= + +Ω

∂Ω∑
K

k k
i

t
y

y y f ,	 (6)

where 
2SOΩ is the SO2 vertical column density. The 

derivative in the last term can be estimated either 
by finite differences or by using linearized radiative 
transfer models [50, 51]. Then 

2SOΩ  can be readily 
retrieved from Eq. (6).

This method has been applied to the Ozone 
Monitoring Instrument (OMI) [52] data in the spec-
tral range (310–340) nm. As the high order principal 
components represent the noise rather than a useful 
signal, the truncation over the principal components 
also acts as a filter. To reconstruct the spectral radi-
ances, at least 20–30 principal components were re-
quired while in the presence of relatively strong SO2 
signals that number could be reduced to 8. Authors 
claim that the noise in the data was decreased by 
factor of 2 thereby providing greater sensitivity 
to anthropogenic sources of SO2.

So far, there are no reports of applying the sim-
ilar approach to other trace gases. One reason for 
that is the difficulty of obtaining the system of EOFs 
for regions without a certain trace gas. The second 
reason is that, strictly speaking, representation (6) 
is approximate. For SO2 it works correctly and the 
residual is associated with the SO2 signal. For other 
trace gases representation (6) might be not valid and 
more elaborated approach is required.

Fig. 5 The same as in Fig. 4, but online phase
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5. DIMENSIONALITY REDUCTION IN 
RTMS WITH MACHINE LEARNING

5.1. General Consideration

Following [53], the inverse problem is solved 
by reducing it to an exercise in optimization. The 
main idea behind this method is to find the state 
vector that minimizes the residual between simu-
lated data and measurements. A non-linear inverse 
problem is solved iteratively [54, 55]. Assuming an 
a priori state vector x, a non-linear forward model 
is linearized about x. Then, the linearized model 
can be easily inverted and a new estimation for the 
state vector can be found. This iterative approach is 
widely used for trace gases retrieval as well as for 
estimating aerosol and cloud properties [56]. How-
ever this inversion method is very time-consuming, 
due to repeated calls to complex radiative transfer 
forward models that simulate radiances and Jaco-
bians (i.e. matrices of the first-order partial deriv-
atives of spectral radiances with respect to x), and 
subsequent inversion of relatively large matrices. 
These considerations motivate the development of 
alternative inversion techniques for remote sensing 
real-time applications, which are based on machine 
learning and therefore sometimes referred to as ful-
l-physics inverse learning machines (FP-ILM) [57].

5.2. The Concept of Learning Machines for 
Atmospheric Retrievals

Machine learning algorithms do not consider the 
optimization problem explicitly. Rather, they learn 
from a given dataset and make predictions regarding 
parameters of interest. Conceptually, the machine 
learning algorithm consists of a training phase, 
wherein the inversion operator is obtained using 
synthetic data generated by the radiative transfer 
model, which expresses the “full-physics” compo-
nent, and an operational phase, in which the inver-
sion operator is applied to real measurements. Here 
the main advantage over the classical optimiza-
tion approach is that the time-consuming training 
phase involving complex radiative transfer model-
ling is performed off-line; the inverse operator itself 
is robust and computationally simple.

Fig. 6 is a schematic representation of the pos-
sible implementation of the learning machine. Dur-
ing the training phase, a training dataset is com-
puted using a full-physics forward model, which 

in our case is the radiative transfer model. In or-
der to capture the essential features of the simu-
lated data and to avoid “over-dimensionality” (the 
so-called Hughes effect [58]), the simulated spec-
tral data are compressed using an appropriate di-
mensionality-reduction technique. The mapping 
between the dimensionality-reduced spectral sim-
ulations and the parameter of interest is captured 
via machine learning.

5.3. Machine Learning Based on the Linear 
Regression Schemes

In the retrieval algorithms based on linear re-
gression, the following representation for the re-
trieved parameter x is exploited:

( )
1

,λ
=

= +∑
W

w w
w

x c l y  

where c  is the linear offset and wl  are the regres-
sion coefficients. The principal component regres-
sion (PCR) method employs the linear regres-
sion model between x and the principal component 
scores of the spectral radiance:

1
;

=

= +∑
K

k k
k

x c l t  

As K << W, the dimension of the linear regres-
sion model (and the corresponding inverse problem) 
is reduced. Moreover, since the instrument noise 
does not affect PC scores of low order, the whole in-
version scheme is more stable.

For noisy data, the set of eigenvectors F  must 
be computed for the matrix Y e+C C , rather than 
for YC , where eC  is the noise covariance matrix. 
In this case, the PC scores for the noisy data are cor-

Fig. 6. Schematic representation of the machine learn-
ing retrieval algorithm which exploits the dimensionality 

reduction of the spectral radiances
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related and are therefore called ‘’projected princi-
pal components’’ [59]. If the statistics of the noise 
is unknown, the noise covariance matrix can be es-
timated by making some assumptions (e.g., Gaus-
sian noise) or by using the following approxima-
tion e α≈C I , where I  is the identity matrix and 
α  is the regularization parameter. This proce-
dure reduces the impact of high-order principal 
components.

The kernel ridge regression (KRR) algorithm 
[60] generalizes the PCR method; KRR has been 
used for predicting atmospheric profiles from the 
IASI (the infrared atmospheric sounding interfer-
ometer) instrument [61]. One drawback of the PCR 
and KRR models is that the basis vectors F  charac-
terize the measurements Y , while information con-
tained in X  is not taken into account. An alter-
native model that gets round this drawback is the 
partial least squares regression (PLSR) [62]. In [62, 
64], it was shown that PLSR leads to model-fitting 
with fewer PCs than required with PCR. In its turn, 
the PLSR approach can be generalized to the case 
when we are retrieving a set of correlated parame-
ters (e.g., the temperature profile) rather than a sin-
gle variable x . The corresponding method is then 
referred to as canonical correlations [65]. The use of 
canonical correlations in atmospheric sciences ap-
plications is summarized in [66].

The approach based on the PCR has been suc-
cessfully applied for solving the problems of vol-
canic plume-height retrieval from GOME‑2 [67] 
and TROPOMI measurements [68], as well as CO2 
retrieval from GOSAT measurements [69, 70].

6. DIMENSIONALITY REDUCTION 
OF INPUT OPTICAL DATA

6.1. Spectra Simulation

An efficient technique using the dimensional-
ity reduction of the optical data has been proposed 
in [71]. This method relies on the local lineariza-
tion of the radiative transfer model with respect 
to input parameters using finite differences. To re-
duce the number of radiative transfer model calls 
for estimating finite difference values, the lineariza-
tion is done in the reduced data space. The method 
can be summarized as follows. We introduce a cor-
rection function as follows:

( ) ( ) ( )ln[ / ].λ λ λ=w w a wQ y y  	 (7)

Here y  is the radiance computed with a full ra-
diative transfer model, while ay  is the radiance 
computed with an approximate model (e.g., the two-
stream model). Then, for the atmosphere consisting 
of L layers, we consider a state vector 2 1+∈ L

w Rx  
containing optical parameters for all layers, i.e.,

 

where sct,σ i  and abs,σ i  are is the scattering coefficient 
and the absorption coefficient in the i th layer, re-
spectively, while ρ  is the surface albedo. Thus, the 
wavelength variability of the optical parameters, 
representing the radiative transfer code input pa-
rameters, is encapsulated in the vector wx . Note, 
that the phase function is assumed to be constant 
within a given spectral interval and therefore not in-
cluded in the vector wx . By applying the 
PCA to { } 1=

W
w w

x , we obtain

( )
1 1

,    1/ .
= =

≈ + =∑ ∑
K W

w wk k w
k w

Wtx x f x x  

Fig. 7 shows the results of PCA for input op-
tical data in the Huggins band (315–335 nm) and 
O2A band (755–775 nm). Optical data is taken from 
[72]. Note that four principal components are suffi-
cient to capture 99.9 % variability of the datasets.

Now, let us assume that ( )wQ x  can be approxi-
mated sufficiently well by its Taylor expan-
sion around x , that is, 

( ) ( )
( ) ( ) ( )21 ,

2

≈ + ∆ ≈

≈ + ∆ ∇ + ∆ ∇ ∆

w w

T T
w w w

Q Q

Q Q Q

x x x

x x x x x x  	 (8)

where ∇Q  and 2∇ Q  are the gradient and the Hes-
sian of Q , respectively. By using central differences 
to approximate the first and the second-order direc-
tional derivatives in (8), we obtain
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From (9) and (7) it is apparent that the compu-
tation of the correction factor requires 2 1+K  calls 
of the full- and two-stream models. Note that if we 
estimated the correction function using finite differ-
ences in the initial data space, that would require 
2L+1 calls of the full- and two-stream models. As 
a result and taking into account that usually ,K L  
we are led to a substantial reduction of the compu-
tational time.

This approach has been applied for simulating 
the spectra in the O2A band [71], the Huggins band 
[34], and CO2 bands [73, 74]. Kopparla et al [75] 
applied the similar approach for modelling the ra-
diances in the UV/Vis/NIR spectral range (0.3–
3000) nm. In all cases authors reported that the root 
mean square errors of the computed radiances are 
of order 0.01 %, yet achieving almost a 10-fold in-
crease in speed. The big advantage of this method 
is that unlike previously considered techniques, 
this one does not require precomputed databases of 
spectra.

In [76], the efficiency of input and output space 
dimensionality reduction techniques was analyzed 
for simulating the Hartley-Huggins band. The 
hybrid usage of these techniques was proposed. 
The output space reduction and the spectral sam-
pling methods are applied to the two-stream solu-
tion by using corresponding lookup tables, while 
multi-stream solution computations are performed 
within the input data reduction framework, de-
scribed in this Section. It was found that the com-
bined use of these techniques yields accuracy better 
than 0.05 % while the speedup factor is about 20.

6.2. Retrieval in the Reduced Input Data Space

Since the atmospheric retrieval problem is se-
verely ill-posed, a physically correct result can be 
obtained only by using a regularization procedure. 
The latter takes into account some a priori informa-
tion. In this context, dimensionality reduction of the 
input data space can be regarded as a special type of 
regularization, i.e. the retrieved parameters should 
obey a certain dependency reproduced by a chosen 
set of EOFs.

Timofeyev et al. [77] applied the dimensional-
ity reduction technique to parameterize the aerosol 
extinction coefficient for incorporation into the in-
version algorithm, in which the corresponding PC 
scores rather than aerosol extinction dependence 
were retrieved. The system of EOFs was defined for 

a dataset of aerosol extinction coefficients computed 
on the base of Mie theory [78] and algorithms for 
particle ensembles. Finally, in [79] the dimension-
ality reduction is performed in the input (tempera-
ture and humidity profiles) and output spaces (spec-
tral radiances), while artificial neural networks are 
used to establish the interdependency between PC 
scores. Since the number of independent parameters 
is reduced, such scheme is more robust and efficient 
than the conventional one.

7. DIMENSIONALITY REDUCTION 
OF HYPER-SPECTRAL DATA IN 
CLASSIFICATION PROBLEMS

Dimensionality reduction plays an important 
role in classification algorithms applied to the hy-
per-spectral data. On-line anomaly detection and 
object recognition in remote sensing imagery is 
extremely important for forest fire and volcanic 
activity monitoring. In such kind of applications 
we are confronted with the classification problem. 
In a reduced data space, the number of variables 
used in classification is smaller, yet their value 
is higher than that in the original space. There-
fore, the classification algorithms (e.g. K-nearest 
neighbour) are more robust and efficient [80, 81]. 
PCA can be used to visualize the hyper-spectral 

Fig. 7. The explained variance in percentage as a function 
of the principal component index in the Huggins band and 

the O2A band

Fig. 8. A schematic representation of the PCA-based clas-
sification algorithms applied to the hyperspectral data
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data on a 2D plane, thereby identifying regions 
with certain features. The concept of combined us-
age of PCA with classifiers is illustrated in Fig. 8. 
Such an approach is used not only in space-borne 
data processing, but also in other fields, such as 
material science [82, 83], tobacco industry [84] and 
food production [85].

8. CONCLUSIONS

In this review, several techniques of hyper-spec-
tral data processing have been considered. They 
are all based on the dimensionality reduction pro-
cedure. It has been shown that the principal com-
ponent analysis can be utilized in several ways for 
hyper-spectral modelling. Therefore it seems that 
the nomenclature “PCA-based radiative transfer 
model” is not appropriate since it does not charac-
terize the specific features of the algorithm (e.g., pa-
pers [40, 49, 75] present absolutely different mod-
els, although all of them are “PCA-based”).

It has been shown that the concept of dimension-
ality reduction gives the framework for formulating 
hyper-spectral RTM that directly takes into account 
a strong interdependency in the hyper-spectral data. 
Further research needs to examine more closely 
how to combine techniques outlined in this review. 
For instance in [86], a hybrid approach comprising 
the correlated-k method and the dimensionality re-
duction of the input data has been described. Such 
models are extremely important for processing re-
mote sensing Big Data in the current missions, and 
becoming a mainstream in the development of next 
generation atmospheric processors.

The discussed principles of data reduction of 
hyper-spectral data are generic and can be applied 
in various applications, including material sci-
ence and electron spectroscopy due to the similar 
methodologies adopted in these fields [87]. In ad-
dition, PCA is a perspective tool for analysing hy-
per-spectral optical data in medicine. In particular, 
recent studies have shown that the dimensionality 
reduction of data cubes can improve the recogni-
tion and classification algorithms, which would be 
extremely important for optical early disease diag-
nostics [88].
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