Сравнение результатов компьютерного моделирования звакуационного освещения 1

А. ПАВЛАК

Национальный исследовательский институт «Центральный институт охраны труда», Варшава, Польша E-mail: anpaw@ciop.pl

Аннотация

Задачей данного исследования было определение точности моделирования эвакуационного освещения посредством наиболее популярных программ для расчёта и проектирования освещения «DIALUX» и «RELUX». Для выполнения этой задачи были выбраны пять светильников эвуакуационного освещения со светодиодами (СД), имеющих разные светораспределения и световые потоки. Расчёты проводились для коридора с размерами $22 \times 2 \times 2,8$ м с использованием сетки, обеспечивающей наибольшую возможную точность, причём учитывался только прямой свет светильников. Требования к освещению определялись требованиями стандарта *EN1838*: *2013* для путей эвакуации шириной 2 м. По результатам компьютерного моделирования и измерений сделан вывод, что, несмотря на ряд недостатков, обе эти программы, используемые при проектировании эвакуационного освещения, подходят для расчёта параметров эвакуационного освещения.

Ключевые слова: освещение путей эвакуации, программы для расчёта и проектирования освещения, *«DIALUX»* и *«RELUX»*, светильник эвакуационного освещения, *EN1838*: 2013.

1. Введение

В случае внезапного и продолжительного выключения основного освещения нельзя безопасно покинуть здание, особенно при наличии в нём большого числа людей, а текущую деятельность невозможно завершить с соблюдением требований техники безопасности. Все пути эвакуации должны быть видны и чётко обозначены. Для их указания используются знаки безопасности, которые

могут освещаться изнутри или снаружи. Освещаемые снаружи знаки изготавливаются из фотолюминесцентных материалов и нуждаются в подходящем освещении. Как показали проведённые исследования [2], для обеспечения требуемой яркости знаков очень многое значат химический состав материала, из которого изготовлен знак, время экспонирования и освещённость на поверхности знака перед отключением общего освещения, а также спектр возбуждающего излучения. Для освещения путей эвакуации используются соответствующие светильники. Они позволяют людям безопасно покидать помещение, в связи с чем их называют светильниками эвакуационного освещения. Для надёжной работы эвакуационного освещения используются дополнительные источники питания, подающие энергию в некоторые светильники общего освещения или в специальные светильники,

установленные именно с этой целью. Согласно действующим в Польше требованиям, автоматически включающееся эвакуационное освещение должно устанавливаться на всех объектах, на которых отключение электропитания может представлять опасность для жизни и здоровья людей, угрожать окружающей среде и приводить к значительному повреждению собственности. Так что эвакуационное освещение напрямую связано с безопасностью людей, и поэтому его технические характеристики (светотехнические и электрические) и, что особенно важно, эффективность его работы строго оговорены в стандартах. Последние устанавливают минимальные требования, которым должны удовлетворять системы эвакуационного освещения [3]. К сожалению, во многих зданиях ещё существуют плохие подобные системы,

Рис. 1. Вид светильника компании *Zumtobel* [7]

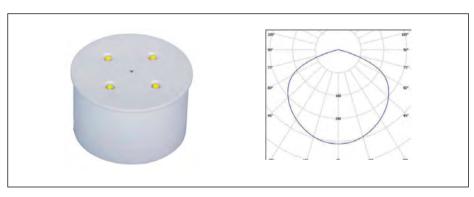


Рис. 2. Вид светильника «Discret N» компании Amatech и его кривая силы света[5]

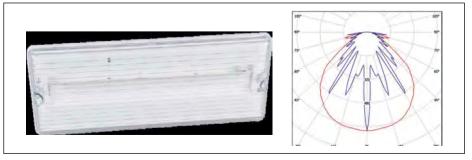


Рис. 3. Вид светильника «Alfa III» компании Amatech и его кривая силы света[5]

¹ Перевод с англ. Е.И. Розовского

Рис. 4. Изображение светильника «Herkules компании Hybryd и его кривая силы света [6]

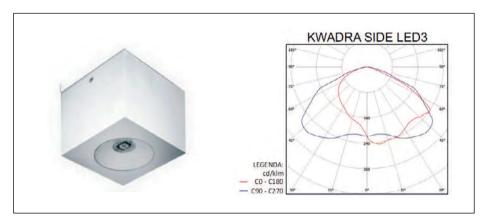


Рис. 5. Изображение светильника «Kwadra Side «компании Hybryd и его кривая силы света [6]

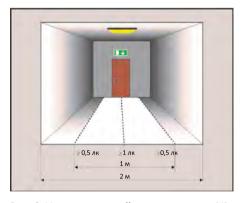


Рис. 6. Нормированный путь эвакуации [1]

например, из-за неправильной реализации проекта, плохого качества монтажных работ или отсутствия технического обслуживания.

2. Объект исследования

2.1. Светильники эвакуационного освещения

Для проведения исследований были выбраны пять светильников эвакуационного освещения, питающихся как от сети, так и от аварийных источников питания. Эти светильники

удовлетворяют требованиям стандарта *PN-EN1838:2013* (далее — стандарта), согласно которым освещённость на пути эвакуации должна достигнуть 0,25 и 0,5 лк через 5 с и 0,5 и 1 лк через 60 с. Эти требования легче всего удовлетворить с помощью светильников с СД.

К светильникам первого типа относились светильники Oriled 2/1W LED760 компании Zumtobel (рис. 1), уже установленные на стенах коридора. Они содержат по 2 СД мощностью 1 Вт. Остальные светильники были выбраны из продукции четырёх основных польских производителей светильников эвакуационного освещения - компаний Amabud-Amatech, Hybryd, Awex и ТМ Technology. Выбор светильников осуществлялся с учётом светораспределения, светового потока, количества и мощности СД. По результатам анализа технических характеристик были выбраны светильники двух из четырёх перечисленных производителей, а именно:

• DISCRET N, 4 x 1 LED, AT, DW1/4/4/AS/1H/ компании Amatech (рис. 2).

- *ALFA III, AT, AL3/4/4/AS/1H* компании *Amatech* (рис. 3).
- HERKULES-P ROAD AT 1J LED5 компании Hybryd (рис. 4).
- KWADRA SIDE N AT 1J LED3 компании Hybryd (рис. 5).

Все эти светильники предназначены для работы в аварийном режиме в течение 1ч.

2.2. Исследовавшееся помещение

Для проведения исследований был выбран коридор с размерами $22 \times 2 \times 2.8$ м. На одной из его стен на высоте 0.58 м от пола были установлены с интервалом в 4.4 м светильники компании Zumtobel (расстояние крайних светильников от более коротких стен — 2.2 м). Остальные светильники устанавливались на стене на таких высоте и расстояниях, которые удовлетворяли требованиям стандартов.

3. Требования к освещению

Что касается освещения, то согласно требованиям стандарта, освещённость на полосе эвакуации шириной до 2 м должна быть не ниже 1 лк в любой точке её центральной линии, а освещённость на центральной полосе, занимающей по меньшей мере полширины пути эвакуации, должна составлять не менее 0,5 лк (рис. 6).

4. Проектирование эвакуационного освещения

Для проектирования эвакуационного освещения были выбраны две наиболее популярные в Польше коммерческие программы: «DIALUX» и «RELUX». В обеих программах: расчёты производились с использованием сетки, обеспечивающей наибольшую возможную точность и состоящую из 4096 точек (128 × × 32); был выбран вариант, учитывающий только прямую составляющую и не учитывающий вклад отражённого света в обеспечение эвакуационного освещения. Более того, коэффициенты отражения стен, потолка и пола считались нулевыми, а коэффициент эксплуатации был выбран равным 0,77 (значение, предложенное обеими программами).

Проекты эвакуационного освещения разрабатывались для коридора

с размерами $22 \times 2 \times 2,8$ м. Так что в обеих программах расчёты освещённости производились применительно к центральной полосе пути эвакуации размером 22×1 м и к её центральной линии длиной 22 м.

Из-за отсутствия существенных различий в расположении светильников в разных проектах, на рис. 7 в качестве примера приведено расположение светильников Alfa III компании Amatech при проведении расчётов в программе «DIALUX», а на рис. 8—в программе «RELUX».

5. Результаты проектирования эвакуационного освещения

На рис. 9—18 приведены проектные расчётные распределения освещённости, а в табл. 1— минимальные и максимальные расчётные значения освещённости, полученные для центральной линии и центральной полосы пути эвакуации. Кроме того, в табл. 1 для обоих объектов приведены отношения максимальной освещённости к минимальной.

6. Оценка точности компьютерного моделирования

6.1. Влияние коэффициентов отражения

Для проверки влияния на полученные результаты допущения о нулевых коэффициентах отражения всех поверхностей помещения, в обеих программах был задействован вариант расчётов с учётом отражённой составляющей. Вначале были использованы выбранные значения коэффициентов отражения стен, потолка и пола². а затем они были заданы как 50. 70 и 20% соответственно. В результате проведённого по обеим программам моделирования установок с пятью исследовавшимися светильниками эвакуационного освещения было установлено, что различия по минимальной и максимальной освещённости на центральной линии и центральной полосе пути эвакуации в обоих случаях не достигали и сотых долей люкса, совпадая с приведённы-

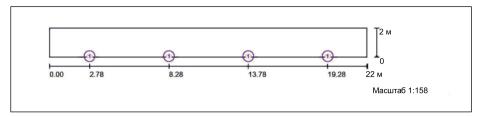


Рис. 7. Схема расположения светильников компании Amatech в «DIALUX»

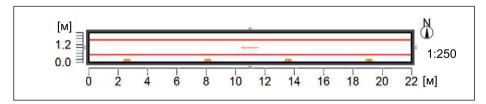


Рис. 8. Схема расположения светильников компании Amatech в «RELUX»

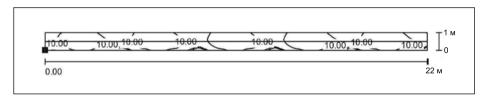


Рис. 9. Полученное в «DIALUX» распределение освещённости, создаваемой светильниками компании Zumtobel

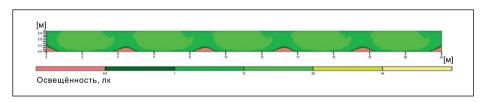


Рис. 10. Полученное в *«RELUX»* распределение освещённости, создаваемой светильниками компании *Zumtobel*

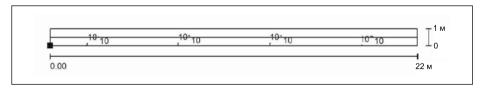


Рис. 11. Полученное в «DIALUX» распределение освещённости, создаваемой светильниками « $Discret\ N$ » компании Amatech

ми в табл. 1. Поэтому можно утверждать, что выбор варианта, в котором при расчёте эвакуационного освещения учитывается только прямая составляющая, «автоматически» восстанавливает значения коэффициентов отражения.

6.2. Влияние количества точек расчётной сетки

Было также исследовано влияние количества точек расчётной сетки на результаты расчётов. В случае программы «RELUX», изменение количества точек, например, с 128×32 на 43×3 , никак не сказалось на резуль-

татах расчётов. В случае же «DIALUX» при таком же изменении количества точек значения освещённости на центральной линии пути эвакуации оставались неизменными, а для центральной полосы были получены другие значения освещённости (табл. 2).

6.3. Выводы о точности компьютерного моделирования

Уменьшение числа точек сетки, использовавшейся в программе «*DIALUX*» привело к:

 уменьшению расчётной максимальной освещённости на центральной полосе пути эвакуации;

² Эти «выбранные» значения коэффициентов отражения в оригинале статьи не приведены. По-видимому, имеются в виду значения, задаваемые программами «по умолчанию». — Прим. пер.

Значения освещённости, полученные в результате компьютерного моделирования эвакуационного освещения

Типы и производители светильников	Программа, по которой про- ектировалось освещение	Центральная линия пути эвакуации			Центральная полоса пути эвакуации		
		$E_{{\scriptscriptstyle MAKC}}, \ {\scriptscriptstyle \Pi K}$	$E_{\scriptscriptstyle MUH}, \ _{ m JK}$	$E_{\text{макс}}/E_{\text{мин}}$	$E_{{\scriptscriptstyle MAKC}}, \ {\scriptscriptstyle \Pi K}$	$E_{\scriptscriptstyle MUH}, \ _{ m JK}$	$E_{\text{макс}}/E_{\text{мин}}$
ORILED2/IW LED760 ZUMTOBEL	«DIALUX»	14,0	2,94	4,76	19,0	0,13	146
	«RELUX»	14,6	1,5	9,73	19,8	0,0	
DISCRET N, 4x 1 LED, AT AMATECH	«DIALUX»	10,78	1,94	5,56	12,0	1,85	6,49
	«RELUX»	10,5	1,5	7,0	11,7	1,4	8,36
ALFA III, AT, AL3/4/4/AS/1H AMATECH	«DIALUX»	6,0	1,32	4,55	16,0	1,04	15,38
	«RELUX»	5,8	0,8	7,25	16,7	0,7	23,86
HERKULES-P ROAD AT LED5 HYBRYD	«DIALUX»	28,0	2,8	10	30,0	2,48	12,1
	«RELUX»	20,8	0,5	41,6	21,2	0,4	53
KWADRA SIDE N AT 1J LED3 HYBRYD	«DIALUX»	10,5	1,89	5,56	13,0	1,48	8,78
	«RELUX»	11,1	0,6	18,5	12,8	0,3	42,67

^{*} Значения, выделенные красным жирным шрифтом, не удовлетворяют требованиям стандарта

 увеличению расчётной минимальной освещённости на центральной полосе пути эвакуации.

После изменения расчётной сетки все светильники, кроме светильника *Oriled 2/1W LED760* компании *Zumtobel*, обеспечивали соответствие требованиям стандарта.

7. Выводы

Из приведённых результатов следует, что проекты эвакуационного освещения на светильниках компании Zumtobel, выполненные с помощью обеих рассматривавшихся программ, не удовлетворяют требованиям стандарта по минимальной освещённости на центральной линии пути эвакуации. Конечно, эти проекты можно было выполнить правильно, но, как упоминалось в начале, высота установки и расположение светильников привязаны к существующей установке эвакуационного освещения.

В случае светильников «Discret N» компании Amatech проекты эвакуационного освещения, выполненные посредством обеих рассматривавшихся программ, удовлетворяют всем требованиям стандарта.

Для светильников «Alfa III» компании Amatech и светильниках «Herkules-P Road» и «Kwadra Side» компании Hybryd полученные результаты были одинаковы: при проектировании с помощью «DIALUX» были удовлетворены все требова-

Рис. 12. Полученное в *«RELUX»* распределение освещённости, создаваемой светильниками *«Discret N»* компании *Amatech*

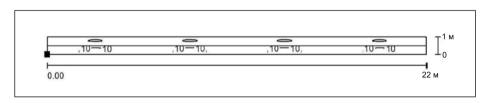


Рис. 13. Полученное в «DIALUX» распределение освещённости, создаваемой светильниками «Alfa~III» компании Amatech

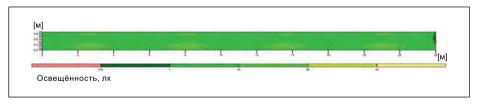


Рис. 14. Полученное в «RELUX» распределение освещённости, создаваемой светильниками «Alfa~III» компании Amatech

ния стандарта, а при проектировании с помощью «RELUX» эти требования удовлетворены не были. Эти отклонения от требований стандарта нельзя считать существенными, так как они легко исправимы, например, путём изменения расстояния между светильниками. Однако целью моделирования было, в первую очередь, сравнение результатов, полученных

при использовании двух рассматривавшихся программ. Поэтому в обеих программах использовались одни и те же входные параметры, в том числе высота установки и расположение светильников.

Сравнительный анализ расчётных значений освещённости, полученных с программами «*DIALUX*» и «*RELUX*» для одного и того же освещаемого

Значения освещённости, полученные в результате компьютерного моделирования эвакуационного освещения в программе «DIALUX» при двух размерах расчётной сетки*

Типы и производители светильников	Количество точек, в которых выполнялись расчёты в программе «DIALUX»	Центральная линия пути эвакуации			Центральная полоса пути эвакуации		
		$E_{{\scriptscriptstyle MAKC}}, \ {\scriptscriptstyle JIK}$	$E_{\scriptscriptstyle MUH},$ лк	$E_{\text{макс}}/E_{\text{мин}}$	$E_{{\scriptscriptstyle MAKC}}, \ {\scriptscriptstyle \Pi K}$	$E_{\scriptscriptstyle MUH},$ лк	$E_{\scriptscriptstyle Makc}/E_{\scriptscriptstyle Muh}$
ORILED2/IW LED760 ZUMTOBEL	128 × 32	14,0	2,94	4,76	19,0	0,13	146
	43 × 3	14,0	2,94	4,76	15,0	0,44	34,1
DISCRET N, 4x 1 LED, AT AMATECH	128 × 32	10,78	1,94	5,56	12,0	1,85	6,49
	43 × 3	10,78	1,94	5,56	11,0	2,02	5,45
ALFA III, AT, AL3/4/4/AS/ 1H AMATECH	128 × 32	6,0	1,32	4,55	16,0	1,04	15,38
	43 × 3	6,0	1,32	4,55	14,0	1,48	9,46
HERKULES-P ROAD AT LED5 HYBRYD	128 × 32	28,0	2,8	10	30,0	2,48	12,1
	43 × 3	28,0	2,8	10	29,0	2,9	10
KWADRA SIDE N AT 1J LED3 HYBRYD	128 × 32	10,5	1,89	5,56	13,0	1,48	8,78
	43 × 3	10,5	1,89	5,56	12,0	1,74	6,9

^{*} Значения, выделенные красным жирным шрифтом, не удовлетворяют требованиям стандарта

участка, позволил сделать следующие выводы:

- если не учитывать светильники «Oriled» компании Zumtobel, то предъявляемым требованиям не удовлетворяют пять значений освещённости, полученных в «RELUX» (для трёх из четырёх исследованных светильников);
- как правило, во всех рассмотренных случаях неудовлетворение требований стандарта в части освещённости заключается в неудовлетворении требования к отношению максимального значения освещённости к минимальному;
- в большинстве случаев (16 из 20) значения освещённости, полученные в *«DIALUX»*, оказались больше полученных в *«RELUX»*:
- в 14 случаях из 20 различия по освещённости были незначительны (не более 2 лк), а максимальное различие (7,2 и 8,8 лк) наблюдалось только в случае светильника «Herkules-P Road» компании Hybryd.

Что касается использования программ «DIALUX» и «RELUX», то здесь можно сказать, что:

- в «DIALUX» модуль эвакуационного освещения более интуитивно-понятен и удобен, чем в «RELUX»;
- при проведении расчётов использовались разные значения параметров, которые были взяты из баз данных соответствующих программ, например, световые потоки или све-

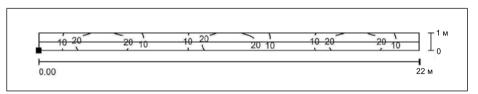


Рис. 15. Полученное в «DIALUX» распределение освещённости, создаваемой светильниками «Kwadra Side» компании Hybryd

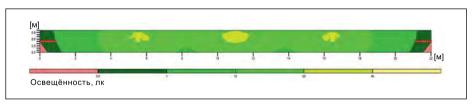


Рис. 16. Полученное в *«RELUX»* распределение освещённости, создаваемой светильниками *«Kwadra Side»* компании *Hybryd*

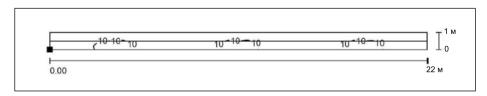


Рис. 17. Полученное в *«DIALUX»* распределение освещённости, создаваемой светильниками *Kwadra Side»* компании *Hybryd*

товые отдачи; кроме того, в «RELUX» приводятся размеры светильников, а в «DIALUX» чётче заданы кривые силы света;

- чертёж помещения с нанесёнными на него контурными линиями, посредством которых демонстрируются результаты расчётов в «RELUX», читается лучше, чем аналогичный чертёж в «DIALUX»;
- в двух случаях один из результатов, полученных с помощью «*RELUX*», приводится с точностью до одной значащей цифры, что влияет на расчётное отношение максимального значения освещённости к минимальному;
- нормативные требования приводятся только в «*RELUX*», причём требования к минимальной освещён-

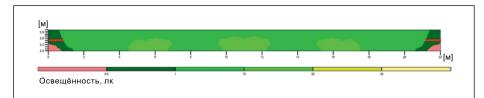


Рис. 18. Полученное в «RELUX» распределение освещённости, создаваемой светильниками «Kwadra Side» компании Hybryd

ности приведены некорректно (относятся к центральной линии);

— результаты расчётов в «DIALUX» не содержат значения минимальной освещённости на центральной линии — её приходится рассчитывать дополнительно.

8. Заключение

Обе программы, обеспечивающие возможность проектирования эвакуационного освещения, имеют как недостатки, так и достоинства, что не позволяет однозначно предпочесть одну из них. Проекты, выполненные с помощью «RELUX», можно считать более строгими и «безопасными» только из-за того, что эта программа даёт более низкие значения

освещённости. Однако на данном этапе неясно, насколько эти расчётные значения освещённости соответствуют реальным.

Эта статья написана по результатам исследований в рамках второго этапа национальной программы «Улучшение безопасности и условий труда», финансировавшейся в 2014—2016 гг. Министерством труда и социальной политики. Координатором этой программы являлся Национальный исследовательский институт «Центральный институт охраны труда».

СПИСОК ЛИТЕРАТУРЫ

1. *Pawlak*, *A*. Poradnik Technika Świetlna'09, Tom 2, Oświetlenie awaryjne. PKOś SEP, Warszawa 2013. – P. 141–156.

- 2. Wandachowicz, K., Zalesinska, M. Analysis of the excitation parameters of photoluminescent low-location lighting materials (pl) // PRZEGLAD ELEKTROTECHNICZNY.—2008.—Vol. 84, No. 8.—P. 118—121.
- 3. *Pawlak*, *A*. Principles of operation of emergency lighting systems (pl) // PRZEGLĄD EL-EKTROTECHNICZNY.— 2015. Vol. 91, No. 7. P. 62—66.
- 4. EN1838: 2013 Lighting applications Emergency lighting.
- 5. Emergency lighting systems. Catalogue 2105. AMATECH AMABUD.
- 6. Emergency Lighting Luminaires' 2015. Catalogue HYBRYD.
- 7. Emergency lighting catalogue ZUMTO-BEL.

Анджей Павлак (Andrzej Pawlak), М. Sc. Окончил в 1987 г. Варшавский технический университет по специальности «Светотехника». Ассистент Национального ис-

следовательского института «Центральный институт охраны труда». Член правления Польской комиссии по освещению

АККРЕДИТОВАННАЯ ИСПЫТАТЕЛЬНАЯ ЛАБОРАТОРИЯ № ВУ/112 02.10.1714 от 13.08.2012г.

проводит испытания светотехнических изделий на соответствие требованиям стандартов и ТУ по следующим характеристикам:

optotechnologies TESTLAB.LEDcenter.by

Государственное предприятие «ЦСОТ НАН Беларуси»

220090, Республика Беларусь г. Минос, Логойский тракт, 22, к. 2 Тел.: +375-17-281-13-35 (приёмная) Факс: +375-17-283-91-51 E-mail: senso@inet.bas-net.by Испытательная лаборатория Тел.: +375-17-281-13-62 Моб.: +375-29-174-174-6 E-mail: led.testlab@gmail.com

Начальник ИЛ: Цвирко Виталий Иванович

СВЕТИЛЬНИКИ

- Класс светораспределения
- Тип КСС в различных плоскостях
- Световой поток, лм
- Спад и время стабилизации светового потока
- Потребляемая мощность, Вт
- Коэффициент мощности
- Световая отдача, лм/Вт
- Коррелированная цветовая температура, К
- Общий и частные индексы цветопередачи
- Коэффициент пульсаций
- Гармонический состав тока, фликер
- Температура в различных точках изделия

ЛАМПЫ, ПОДСВЕТКИ, СВЕТОВЫЕ ПАНЕЛИ

- Световой поток, лм
- Спад и время стабилизации светового потока
- Потребляемая мощность, Вт
- Коэффициент мощности
- Световая отдача, лм/Вт
- Коррелированная цветовая температура, К
- Координаты цветности (X, Y)
- Общий и частные индексы цветопередачи
- Температура в различных точках изделия
- Яркость, кд/м2
- Измеряем трубчатые лампы типа Т8 и Т12 с цоколем G13 длиной от 44 до 150 см
- Измеряем лампы с цоколями GU10, G9, E14, E27, E40
- Климатические испытания

СВЕТОДИОДЫ И СВЕТОДИОДНЫЕ МОДУЛИ

- Вольтамперная характеристика
- Спектральное распределение излучения в диапазоне 200-1000 нм
- Световой поток, лм
- Излучаемая мощность, Вт
- Поток фотонов в области ФАР, мкмоль/с
- Эффективность в области ФАР, мкмоль/с/Вт
- «Усредненная» сила света, кд
- Яркость, кд/м2
- Коррелированная цветовая температура, К
- Координаты цветности (Х, Ү)
- Потребляемая мощность, Вт
- Температурный коэффициент напряжения

Работы проводятся на оборудовании ведущих мировых производителей:

- Instrument Systems (Германия)
- · Agilent (США)
- Flir (Швеция)
- Testo (Германия)
- Konica Minolta (Япония)
- Laplace Instruments (Великобритания)

