Содержание
Иллюстрации - 9
Таблицы и схемы - 1
Исследование деградации флуоресцентных свойств графитоподобного нитрида углерода «Светотехника», 2022, №5

Журнал «Светотехника» №5

Дата публикации 14/10/2022
Страница 59-66

PDF

Исследование деградации флуоресцентных свойств графитоподобного нитрида углерода «Светотехника», 2022, №5
Авторы статьи:
Богомолов Александр Борисович, Зинин Павел Валентинович, Павлов Иван Сергеевич, Галкин Артём Сергеевич, Головин Андрей Леонидович

Богомолов Александр Борисович, инженер. Окончил в 2020 г. РТУ МИРЭА (МИТХТ) по направлению «Стандартизация и метрология»..Аспирант НТЦ УП РАН 3-го года обучения. Область научных интересов: флуоресценцентные материалы

Зинин Павел Валентинович, кандидат физ.-мат. наук. Окончил в 1980 г. физический факультет МГУ. им. М.В. Ломоносова. Ведущий научный сотрудник НТЦ УП РАН. Область научных интересов: углеродные материалы, физика высоких давлений

Павлов Иван Сергеевич, аспирант Института кристаллографии им. А.В. Шубникова. Специалист по просвечивающей микроскопии. Область научных интересов: наноматериалы

Галкин Артём Сергеевич, аспирант ТИСНУМ. Специалист по ИК спектроскопии

Головин Андрей Леонидович, кандидат физ.-мат. наук. Учёный секретарь ФНИЦ «Кристаллография и фотоника» РАН

Аннотация
Графитоподобный нитрид углерода – двумерный флуоресцентный материал с выявленной деградацией флуоресцентных свойств. Он был получен термическим разложением меламина и исследован с помощью ИК спектроскопии, просвечивающей электронной микроскопии и рентгенофазового анализа. Выявлено три основных механизма деградации флуоресценции. Первый и третий – это присоединение водорода к центрам с неподелённой парой электронов, что приводит к критическому изменению флуоресцентных свойств, а второй – адсорбции воды, которая накапливается не только по поверхности материала, но и, возможно, проникает между слоёв, вызывая этим незначительное ухудшение флуоресценции.
Список использованной литературы
1. Ziebarth J., McGehee M. A theoretical and experimental investigation of light extraction from polymer light–emitting diodes // Journal of Applied Physics. – 2005. – Vol. 97.
2. Porcu S. et al. Come to light: Detailed analysis of thermally treated Phenyl modified Carbon Nitride Polymorphs for bright phosphors in lighting aPlications // Applied Surface Science. – 2020. – Vol. 504.
3. Hatamie A., Marahel F., Sharifat A. Green synthesis of graphitic carbon nitride nanosheet (g–C3N4) and using it as a label–free fluorosensor for detection of metronidazole via quenching of the fluorescence // Talanta. – 2018. – Vol. 176. – P. 518–525.
4. Iwano Y. et al. Study of Amorphous Carbon Nitride Films Aiming at White Light Emitting Devices // Japanese Journal of APlied Physics. – 2008. – Vol. 47. – P. 7842–7844.
5. Kozuno T. et al. Study of white–LED using amorphous carbon nitride grown by RF–sputtering and ECR–plasma CVD // Journal of Light & Visual Environment. – 2011. – Vol. 35.
6. Cao Q. et al. Visible–light induced emulsion photopolymerization with carbon nitride as a stabilizer and photoinitiator // Polym. Chem. – 2019. – Vol. 10. – P. 5315–5323.
7. Gu S. et al. Tailoring fluorescence emissions, quantum yields, and white light emitting from nitrogen–doped graphene and carbon nitride quantum dots // Nanoscale – 2019. – Vol. 11. – P. 16553–16561.
8. Lai C. et al. Synthesis and properties of carbon quantum dots and their research progress in cancer treatment // Dyes and Pigments. – 2021. – Vol. 196.
9. Rong M. et al. Study on the Ultrahigh Quantum Yield of Fluorescent P, O–g–C3N4 Nanodots and its Application in Cell Imaging // Chemistry – a European Journal. – 2016. – Vol. 22. – P, 9387–9395.
10. Zinin P.V. et al. Anomalous fluorescence of the spherical carbon nitride nanostructures // Chemical Physics Letters. – 2015. – Vol. 633. – P. 95–98.
11. Bogomolov A.B. et al. Synthesis of Fluorescent Composite Materials Based on Graphitic Carbon Nitride // Optics and Spectroscopy. – 2020. – Vol. 128. – P. 920–923.
12. Li Y.Q., Zhang L.H., Gong H. Dynamic thermal degradation studies on amorphous carbon thin films // Journal of Thermal Analysis and Calorimetry. – 2005. – Vol. 79. – P. 677–683.
13. Kroke E. et al. Tri–s–triazine derivatives. Part I. From trichloro–tri–s–triazine to graphitic C3N4 structures // New Journal of Chemistry. – 2002. – Vol. 26. – P. 508–512.
14. Williams A.T.R., Winfield S.A., Miller J.N. Relative fluorescence quantum yield using a computer controlled luminescence spectrometer // Analyst. – 1983. – Vol. 108. – P. 1067–1071.
15. Dixon J.M., Taniguchi M., Lindsey J.S. PhotochemCAD2: A Refined Program with Accompanying Spectral Databases for Photochemical Calculations // Photochem. Photobiol. – 2005. – Vol. 81, No. 1. – P. 212–213.
16. Zinin P.V. et al. Ultraviolet and near–infrared Raman spectroscopy of graphitic C3N4 phase Chemical Physics Letters. – 2009. – Vol. 472. – P. 69–73.
17. Бабушкин А.А., Бажулин П.А., Королёв Ф.А. Методы спектрального анализа. – М.: МГУ, 1962.
18. Зайцев Е.В. Обработка инфракрасных спектров и спектров комбинационного рассеяния с помощью программного комплекса, созданного в среде Wolfram Mathematica // Успехи в химии и химической технологии. – 2017. – Т. 31, № 8 (189). – P. 96–97.
19. Zinin P.V. et al. Ultraviolet and near–infrared Raman spectroscopy of graphitic C3N4 phase // Chemical Physics Letters. – 2009. – Vol. 472. – P. 69–73.
20. Крылов А.С., Втюрин А.Н., Герасимова Ю.В. Обработка данных инфракрасной Фурье-спектроскопии. Методическое пособие. – Красноярск: Институт физики СО РАН, 2015.
21. Ferrari A.C., Rodil S.E., Robertson J. Interpretation of infrared and Raman spectra of amorphous carbon nitrides // Physical Review B. – 2003. – Vol. 67, Apr.
22. Fu Q., Cao C.-B., Zhu H.-S. A solvothermal synthetic route to prepare polycrystalline carbon nitride // Chemical Physics Letters. – 1999. – Vol. 314, No. 3–4. – P. 223–226.
23. Chebanenko M.I., Zakharova N.V, Popkov V.I. Synthesis and Visible–Light Photocatalytic Activity of Graphite–like Carbon Nitride Nanopowders // Russian Journal of Applied Chemistry. – 2020. – Vol. 93, Apr. – P. 494–501.
24. Yuan X.H. et al. Combinatorial Vibration–Mode Assignment for the FTIR Spectrum of Crystalline Melamine: A Strategic AProach toward Theoretical IR Vibrational Calculations of Triazine–Based Compounds // Journal of Physical Chemistry A. – 2016. – Vol. 120, Sep. – P. 7427–7433.
25. Grabska J. et al. Distinct Difference in Sensitivity of NIR vs. IR Bands of Melamine to Inter–Molecular Interactions with Impact on Analytical Spectroscopy Explained by Anharmonic Quantum Mechanical Study // Molecules. – 2019. – Vol. 24, Apr.
26. Xu J.Y. et al. Eosin Y–sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen eVolution: the effect of the pyrolysis temperature of urea // Physical Chemistry Chemical Physics,. – 2013. – Vol. 15. – P. 7657–7665.
27. Баглов A.B. и др. Структурные и фотолюминесцентные свойства графитоподобного нитрида углерода // Физика и техника полупроводников – 2020 – Vol. 54. – P. 176.
28. Zimmerman J.L. et al. Preparation of sphere–shaped nanoscale carbon nitride polymer // Russian Chemical Bulletin. – 2001. – Vol. 50, Nov. – P. 2020–2027.
29. Yu D.L. et al. Phase transformation of melamine at high pressure and temperature // Journal of Materials Science. – 2008. – Vol. 43. – P. 689–695.
30. Тарасевич Б.Н. ИК спектры основных классов органических соединений (справочные материалы). – М.: МГУ, 2012.
31. Kong L.R. еt al. Site–selected N vacancy of g–C3N4 for photocatalysis and physical mechanism // Aрplied Materials Today – 2018. – Vol. 13, Dec. – P. 329–338.
32. Chaplin М. Water Absorption Spectrum / Web, P. 1–6, 2013.
33. Li Y. et al. Raman spectroscopy and x–ray diffraction measurements on C60 compressed in a diamond anvil cell // Phys. Rev. B. – 2003. – Vol. 68. – P. 24106–24106.
34. Tyborski T. et al. Tunable optical transition in polymeric carbon nitrides synthesized via bulk thermal condensation // Journal of Physics: Condensed Matter. – 2012. – Vol. 24, No. 3. – P. 162201–162201.
35. Bredas J.L. Mind the gap! // Materials Horizons. – 2014. – Vol. 1. – P. 17–19.
36. Zhang Y.H. et al. Synthesis and luminescence mechanism of multicolor–emitting g–C3N4 nanopowders by low temperature thermal condensation of melamine // Scientific Reports. – 2013. – Vol. 3, Jun. – P. 8.
37. Gan Z.X. et al. The origins of the broadband photoluminescence from carbon nitrides and aPlications to white light emitting // Nano Research. – 2016. – Vol. 9, Jun. – P. 1801–1812.
38. Meek G.A. et al. Polaronic Relaxation by Three–Electron Bond Formation in Graphitic Carbon Nitrides // The Journal of Physical Chemistry C. – 2014. – Vol. 118. – P. 4023–4032.
39. McMillan P.F. et al. Graphitic carbon nitride C6N9H3·HCl: Characterisation by UV and near–IR FT Raman spectroscopy // Journal of Solid State Chemistry. – 2009. – Vol. 182. – P. 2670–2677.
40. Kong L. et al. Site–selected N vacancy of g–C3N4 for photocatalysis and physical mechanism // Applied Materials Today. – 2018. – Vol. 13. – P. 329–338.
41. Finete V.L.M. et al. Characterization of newfound natural luminescent properties of melamine, and development and validation of a method of high performance liquid chromatography with fluorescence detection for its determination in kitchen plastic ware // Talanta. – 2014. – Vol. 123, Jun. – P. 128–134.
42. Porcu S. et al. Come to light: Detailed analysis of thermally treated Phenyl modified Carbon Nitride Polymorphs for bright phosphors in lighting aPlications // Aplied Surface Science. – 2020. – Vol. 504. – P. 144330–144330.
43. Dunin–Borkowski R. et al. High–yield synthesis and optical properties of g-C3N4 // Nanoscale. – 2015. – Vol. 7. – P. 12343–12350.
Ключевые слова
Рекомендуемые статьи
https://web.rsmatamakassar.org/asset/https://web.rsmatamakassar.org/akun-pro-kamboja/https://ojs.didaktik-der-mathematik.de/pasarantogel2/https://pjmhsonline.com/pasarantogel2/https://brawijayahospital.com/assets/idn/https://pusatsains.com/wp-includes/idn/https://pusatsains.com/wp-content/pasarantogel2/https://journals.uab.pt/sugar-rush/https://ojs.didaktik-der-mathematik.de/starlight-princess/http://sulj.oduvs.od.ua/demo-lucky-neko/https://nv.nung.edu.ua/https://ibed.jmc.edu.ph/wp-content/wild-bounty-showdown/https://journal.iapi-indonesia.org/classes/https://brawijayahospital.com/assets/zeus/https://chanrejournals.com/sigmaslot/https://conference.indef.or.id/wild-bounty-showdown/https://betajournal.indef.or.id/classes/https://gojournals.gouni.edu.ng/controllers/pasarantogel2/https://jms.ump.edu.pl/classes/sigmaslot/http://periodicos.unifap.br/https://siplah.intanonline.com/demo-lucky-neko/index.htmlhttp://ojs.upmin.edu.ph/ojsfiles/pasarantogel2/https://jltl.com.tr/depo-10k/https://jltl.com.tr/sigmaslot/https://citi.indef.or.id/wp-content/idn/https://jms.ump.edu.pl/akun-pro-kamboja/https://jltl.com.tr/slot-kamboja/https://jltl.com.tr/pasarantogel2/https://jms.ump.edu.pl/pasarantogel2/https://jms.ump.edu.pl/sigmaslot/https://past.indef.or.id/sigma/https://green.indef.or.id/pasarantogel2/https://blogs.indef.or.id/https://siplah.intanonline.com/maxwin/index.htmlhttps://siplah.intanonline.com/luar-negeri/index.htmlhttps://siplah.intanonline.com/sigma/index.htmlhttps://journals.asmarya.edu.ly/sigmaslot/https://civitic.indoamerica.edu.ec/wp-content/sigmaslot/https://iapi-indonesia.org/gampang-menang/https://iapi-indonesia.org/assets/https://iapi-indonesia.org/depo-10k/https://iapi-indonesia.org/zeus/https://brawijayahospital.com/assets/front/https://brawijayahospital.com/assets/depo-10k/https://brawijayahospital.com/assets/https://brawijayahospital.com/assets/slot-gacor-maxwin/https://iedi.edu.br/wp-includes/sigma/https://investigacion.indoamerica.edu.ec/wp-includes/sigma/https://db2.iaesprime.com/https://db.iaesprime.com/https://ojs.nbu.edu.sa/files/sigmaslot/https://www.teknika-ftiba.info/teknika/sigma/https://www.teknika-ftiba.info/jurnal/mpo/https://www.teknika-ftiba.info/ojs/pasarantogel2/https://www.unjc.cu/depo10k/https://untref.edu.ar/uploads/demo/gates-of-olympus/https://untref.edu.ar/uploads/demo/sweet-bonanza/https://fjot.anfe.fr/https://tokorumput.com/wp-content/slot-depo-10k/https://classyfm.co.id/frontend/sigmaslot/https://nrais.dgda.gov.bd/public/pasarantogel2https://revistas.unap.edu.pe/demo-slot-zeus-vs-hades/https://revistas.unap.edu.pe/slot-kamboja-bet-100/https://jltl.com.tr/zeus-slot/https://mediapencerahanbangsa.co.id/https://newhealthconcept.net/wp-includes/demo-slot-zeus-vs-hades/https://journals.asmarya.edu.ly/pasarantogel2/https://pdamindramayu.co.id/images/luar/https://pdamindramayu.co.id/demo/https://learning.modernland.co.id/git/slot-depo-10k/https://aihc.amexihc.org/toto/http://himatikauny.org/wp-includes/zeus/https://iedi.edu.br/wp-content/bandito/https://cstvcnmt.gialai.gov.vn/demo/https://sedimentologia.org.ar/slot-depo-10k/https://conference.vestnik-vsuet.ru/https://bundamediagrup.co.id/wp-includes/mpo/https://bundamediagrup.co.id/wp-includes/sv388/https://journal.dntb.gov.ua/slot-depo-10k/https://fjot.anfe.fr/js/https://portalderevistas.uam.edu.ni/public/pasarantogel2/https://perhepi.org/fae/akun-pro-jepang/https://ejournal.aibpmjournals.com/gates-of-olympus/https://journals.qmu.ac.uk/classes/https://ucardioj.com.ua/slot-depo-10k/https://journals.qmu.ac.uk/sv388/https://journals.qmu.ac.uk/api/depo-10k/https://ois.unsa.ba/slot-deposit-pulsa/http://103.165.243.97/doc/git/https://www.chiesadellarte.org/https://www.rollingcarbon.org/https://www.savebugomaforest.org/https://www.sigmaslot-profil.com/https://www.doxycycline365.com/https://thailottonew.site/https://hipnose.in/https://tennishope.orghttps://serenityprime.net/https://civitic.indoamerica.edu.ec/wp-includes/pasarantogel2/https://352spb.edusite.ru/slot-depo-10k/https://bundamediagrup.co.id/depo10k/https://loa.tsipil-uii.ac.id/sg-gacor/http://snabm.unim.ac.id/depo-10k/http://snabm.unim.ac.id/lib/slot-maxwin/https://www.chuka.ac.ke/gates-of-olympus-1000/http://mysimpeg.gowakab.go.id/mysimpeg/maxwin/https://jurnal.jsa.ikippgriptk.ac.id/public/luar/https://www.unjc.cu/sweet-bonanza/