Содержание
Иллюстрации - 12
Таблицы и схемы - 1
Особенности подводной системы оптической беспроводной связи в условиях различных типов морской воды «СВЕТОТЕХНИКА», 2021, №5

Журнал «Светотехника» №5

Дата публикации 21/10/2021
Страница 68-76

Купить PDF - ₽450

Особенности подводной системы оптической беспроводной связи в условиях различных типов морской воды «СВЕТОТЕХНИКА», 2021, №5
Авторы статьи:
Баладжи Катавараян, Шактив Муруган Сантанам

Баладжи Катавараян работает ассистентом профессора на кафедре электроники и связи в Инженерном колледже Майлам, Майлам, Тамилнаду с 2013 года. В настоящее время он готовится к защите докторской диссертации. Область его научных интересов включает подводную оптическую связь, обработка подводных акустических сигналов и подводную сенсорную сеть

Шактив Муруган Сантанам, Ph.D., в настоящее время работает доцентом в Инженерном колледже Шри Сивасубрамания Надар. Область его научных интересов – это подземная беспроводная связь и подводная акустическая связь, обработка подводных сигналов, акустические беспроводные сенсорные сети, сбор зелёной энергии и глубокое обучение

Аннотация
Подводная система оптическая беспроводной связи активно применяется военным, промышленным предприятиями и ведущими научными сотрудниками для целей стратегического наблюдения, проверки загрязнения, контроля и состава нефти, исследований в море, наблюдения за изменениями окружающей среды и океанографических исследований. В связи с проведением большого количества подобных исследований увеличивается и количество беспилотных транспортных средств или устройств, перевозимых под водой, которые требуют высокой скорости передачи данных и обладают ограничениями в этом отношении. Несмотря на то, что ранее уже был достигнут значительный прогресс в области акустической переписки под водой, она все-таки ограничена возможностями передачи данных. Это стало причиной развития подводной оптической системы беспроводной связи, поскольку она обеспечивает более высокую скорость передачи информации, чем обычные системы акустической связи, с принципиально более низким энергопотреблением и менее сложными вычислительными процессами для коротких удалённых соединений. Подводная система оптической беспроводной связи имеет множество потенциальных применений, начиная от глубоководных морей и заканчивая прибрежными водами. При этом основная проблема подводной системы оптической беспроводной связи - это эксплуатация в условиях морской воды и в океане. Для решения этой проблемы требуется глубокое понимание сложного физико-химического состава природных структур. В этой статье даётся всесторонний обзор текущих достижений в области подводной системы оптической беспроводной 1 Перевод с англ. Т.В. Мешковой связи. А также затрагиваются такие аспекты, как среда распространения, её свойства, подходящая длина волны подводной оптической беспроводной связи, соответствующее освещение, различные источники шума, анализ принимаемой и передаваемой мощности. Кроме того, в статье предлагаются новые идеи, направленные на развитие подводной системы оптической беспроводной связи.
Список использованной литературы
1. M. Stojanovic, Recent advances in high-speed underwater acoustic communications // IEEE J. Ocean. Eng., 1996, Vol. 21, #2, pp. 125–136.
2. M. Doniec, M. Angermann, and D. Rus, An end-to-end signal strength model for underwater optical communications // IEEE J. Ocean. Eng., 2013, Vol. 38, #4, pp. 743–757.
3. H.-P. Tan, R. Diamant, W.K. Seah, and M. Waldmeyer, A survey of techniques and challenges in underwater localization // Ocean Engineering, 2011, Vol. 38, #14, pp. 1663–1676.
4. H. Ochi, Y. Watanabe, and T. Shimura, Basic Study of Underwater Acoustic Communication Using 32-Quadrature Amplitude Modulation // Japanese J. of App. Physics, 2005, Vol. 44, #6S, p. 4689.
5. H. C. Song and W.S. Hodgkiss, Efficient use of bandwidth for underwater acoustic communication // The J. of the Acous. Soc. of Am., 2013, Vol. 134, #2, pp. 905–908.
6. G. Tuna and V.C. Gungor, A survey on deployment techniques, localization algorithms, and research challenges for underwater acoustic sensor networks // Int. J. of Commun. Sys., 2017, Vol. 30, #17, pp. 1–21.
7. J. Luo, L. Fan, S. Wu, and X. Yan, Research on Localization Algorithms Based on Acoustic Communication for Underwater Sensor Networks // Sensors, 2018, Vol. 18, #1, pp. 1–25.
8. C. Wang, H.-Y. Yu, Y.-J. Zhu, T. Wang, and Y.-W. Ji, Multi-LED parallel transmission for long distance underwater VLC system with one SPAD receiver // Opt. Commun., Vol. 410, pp. 889–895, Dec. 2017.
9. J. Xu, M. Kong, A. Lin, Y. Song, X. Yu, F. Qu, J. Han, and N. Deng, OFDM-based broadband underwater wireless optical communication system using a compact blue LED // Opt. Commun., 2016, Vol. 369, #Supplement C, pp. 100–105.
10. H. M. Oubei, J.R. Duran, B. Janjua, H.- Y. Wang, C.-T. Tsai, Y.-C. Chi, T.K. Ng, H.-C. Kuo, J.-H. He, M.-S. Alouini, G.-R. Lin, and B.S. Ooi, 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication // Opt. Express, 2015, Vol. 23, #18, pp. 23 302–23 309.
11. M. G.G. Camila, S. R.D. Paulo, L. R.C. Marcello, A.M. Wallace, M.C. Felipe, and N.G. Jonathan, A survey of underwater wireless communication technologies // J. of Commun. and Info. Sys., 2016, Vol. 31, #1, pp. 242–255.
12. L. J. Johnson, R.J. Green, and M.S. Leeson, Underwater optical wireless communications: depth dependent variations in attenuation // Appl. Opt., 2013, Vol. 52, #33, pp. 7867–7873.
13. S. P. Najda, P. Perlin, T. Suski, L. Marona, M. Leszczyski, P. Wisniewski, R. Czernecki, R. Kucharski, G. Targowski, M.A. Watson, H. White, S. Watson, and A.E. Kelly, AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water // Opt. Engineering, 2016, Vol. 55, #6, p. 55.
14. I. Vasilescu, C. Detweiler, M. Doniec, D. Gurdan, S. Sosnowski, J. Stumpf, and D. Rus, AMOUR V: A hovering energy efficient underwater robot capable of dynamic payloads // The Int. J. of Rob. Res., 2010, Vol. 29, #5, pp. 547–570.
15. A. Y. Teymorian, W. Cheng, L. Ma, X. Cheng, X. Lu, and Z. Lu, 3D Underwater Sensor Network Localization // IEEE Trans. Mobile Comput., 2009, Vol. 8, #12, pp. 1610–1621.
16. D. Pompili and I.F. Akyildiz, Overview of networking protocols for underwater wireless communications // IEEE Commun. Mag., 2009, Vol. 47, #1, pp. 97–102.
17. M. V. Jamali, J.A. Salehi, and F. Akhoundi, Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme // IEEE Trans. Commun., 2017, Vol. 65, #3, pp. 1176–1192.
18. D. Toublanc, Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computing, Appl. Opt., 1996, Vol. 35, #18, pp. 3270–3274.
19. J. H. Smart, Underwater optical communications Systems part 1: variability of water optical parameters // IEEE Military Commun. Conf., (MILCOM), Oct. 2005, pp. 1140–1146 Vol. 2.
20. A. L. Alldredge and M.W. Silver, Characteristics, dynamics and significance of marine snow // Progress in Oceanography, 1988, Vol. 20, #1, pp. 41–82.
21. C. Li, K.H. Park, and M.S. Alouini, On the use of a direct radiative transfer equation solver for path loss calculation in underwater optical wireless channels // IEEE Wireless Commun. Lett., 2015, Vol. 4, #5, pp. 561–564.
22. M. Holohan and J. Dainty, Low-order adaptive optics: a possible use in underwater imaging? // Opt. & Laser Techno., 1997, Vol. 29, #1, pp. 51–55.
23. W. C. Cox, B.L. Hughes, and J.F. Muth, A polarization shiftkeying system for underwater optical communications // OCEANS, 2009, pp. 1–4.
24. B. Cochenour, L. Mullen, and A. Laux, Phase coherent digital communications for wireless optical links in turbid underwater environments // OCEANS, Sep. 2007, pp. 1–5.
25. Y. Ata and Y. Baykal, Scintillations of optical plane and spherical waves in underwater turbulence // J. Opt. Soc. Am. A, 2014, Vol. 31, #7, pp. 1552–1556.
26. M. A. Khalighi and M. Uysal, Survey on Free Space Optical Communication: A Communication Theory Perspective // IEEE Commun. Surveys Tuts., 2014, Vol. 16, #4, pp. 2231–2258.
27. C. Gabriel, M.A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, Monte-Carlo-based channel characterization for underwater optical communication systems, IEEE/OSA Journal of Optical Communications and Networking, 2013, Vol. 5, #1, pp. 1–12.
28. Vladimir P. Budak, Dmitry S. Efremenko, Pavel A. Smirnov, Fraunhofer Diffraction Description In The Approximation Of The Light Field Theory // Light & Engineering, 2020, Vol. 28, #5.
29. Vladimir P. Budak, Victor S. Zheltov, Tatiyana V. Meshkova, Victor D. Chembaev, Experimental Study of the New Criterion of Lighting Quality Based on Analysis of Luminance Distribution at Moscow Metro Stations // Light & Engineering, 2020, Vol. 28, #3.
30. Svetlana Yu. Minaeva, Vladimir P. Budak, Studies of Application of LED-Based Lighting Devices in a Car Assembly Shop // Light & Engineering, 2019, Vol. 27, #6.
31. Alexander V. Leonidov, Changes in Irradiance and Illuminance on Earth Surface during 11-Year Solar Activity Cycle // Light & Engineering, 2020, Vol. 28, #2, pp. 61–66.
32. B. Cochenour, L. Mullen, and J. Muth, Effect of scattering albedo on attenuation and polarization of light underwater // Optics Letters, 2010, Vol. 35, #12, pp. 2088–2090.
33. W. Cox and J. Muth, Simulating channel losses in an underwater optical communication system // Journal of the Optical Society of America A, 2014, Vol. 31, #5, pp. 920–934.
34. Y.-C. Chi, D.-H. Hsieh, C.-T. Tsai, H.-Y. Chen, H.-C. Kuo, and G.-R. Lin, 450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM // Optics Express, 2015, Vol. 23, #10, pp. 13051–13059.
35. K. Nakamura, I. Mizukoshi, and M. Hanawa, Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel, Opt Express, 2015, Vol. 23, #2, pp. 1558–66.
36. R. J. Hill, Optical propagation in turbulent water // Journal of the Optical Society of America, 1978, Vol. 68, #8, pp. 1067–1072.
37. W. Lu, L. Liu, J. Sun, Q. Yang, and Y. Zhu, Change in degree of coherence of partially coherent electromagnetic beams propagating through atmospheric turbulence // Optics Communications, 2007, Vol. 271, #1, pp. 1–8.
38. T. Wiener and S. Karp, The Role of Blue/Green Laser Systems in Strategic Submarine Communications // IEEE Transactions on Communications, 1980, Vol. 28, #9, pp. 1602–1607.
39. X. Yi, Z. Li, and Z. Liu, Underwater optical communication performance for laser beam propagation through weak oceanic turbulence // Applied Optics, 2015, Vol. 54, #6, pp. 1273–1278.
40. J. J. Puschell, R.J. Giannaris, and L. Stotts, The Autonomous Data Optical Relay Experiment: first two way laser communication between an aircraft and submarine, in [Proceedings] NTC‑92: National Telesystems Conference, 1992, pp. 14/27–14/30.
41. L. Mullen, D. Alley, and B. Cochenour, Investigation of the effect of scattering agent and scattering albedo on modulated light propagation in water // Applied Optics, 2011, Vol. 50, #10, pp. 1396–1404.
42. L. Mullen, A. Laux, and B. Cochenour, Propagation of modulated light in water: implications for imaging and communications systems // Applied Optics, 2009, Vol. 48, #14, pp. 2607–2612.
43. B. Cochenour, L. Mullen, and J. Muth, Temporal Response of the Underwater Optical Channel for High-Bandwidth Wireless Laser Communications, IEEE Journal of Oceanic Engineering, 2013, Vol. 38, #4, pp. 730–742.
44. H. M. Oubei, C. Li, K.-H. Park, T.K. Ng, M.-S. Alouini, and B.S. Ooi, 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode // Optics Express, 2015, Vol. 23, #16, pp. 20743–20748.
45. H. M. Oubei, R.T. ElAfandy, K.H. Park, T.K. Ng, M.S. Alouini, and B.S. Ooi, Performance Еvaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations // IEEE Photonics Journal, 2017, Vol. 9, #2, pp. 1–9.
46. A. E. Willner et al., Underwater optical communications using orbital angular momentum-based spatial division multiplexing // Optics Communications, 2018, Vol. 408, pp. 21–25.
47. D. A. Kolovayev, Investigation of theconcentration and statistical size distribution of wind-produced bubbles in the near-surface ocean // Oceanol., Engl. Transl., 1976, Vol. 15, pp. 659–661.
48. D. Arnush, Underwater Light-Beam Propagation in the Small-Angle-Scattering Approximation // Journal of the Optical Society of America, 1972, Vol. 62, #9, pp. 1109–1111.
49. S. Jaruwatanadilok, Underwater Wireless Optical Communication Channel Modeling and Performance Evaluation using Vector Radiative Transfer Theory // IEEE Journal on Selected Areas in Communications, 2008, Vol. 26, #9, pp. 1620–1627.
50. S. Sakthivel Murugan, V. Natarajan, R. Rajesh Kumar, Noise Model Analysis and Estimation of Effect due to Wind Driven Ambient Noise in Shallow Water // International Journal of Oceanography, 2011, Vol. 2011, 4 p.
51. Y. m. Lin and P. l. Tien, Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber // IEEE Journal on Selected Areas in Communications, 2010, Vol. 28, #6, pp. 791–799.
52. J. Baghdady et al., Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing // Optics Express, 2016, Vol. 24, #9, pp. 9794–9805.
Ключевые слова
Выберите вариант доступа к этой статье

Купить

Рекомендуемые статьи
https://iapi-indonesia.org/assets/https://iapi-indonesia.org/depo-10k/https://iapi-indonesia.org/zeus/https://brawijayahospital.com/assets/front/https://brawijayahospital.com/assets/depo-10k/https://brawijayahospital.com/assets/https://brawijayahospital.com/assets/slot-gacor-maxwin/https://iedi.edu.br/wp-includes/sigma/https://investigacion.indoamerica.edu.ec/wp-includes/sigma/https://db2.iaesprime.com/https://db.iaesprime.com/https://ojs.nbu.edu.sa/files/sigmaslot/https://www.teknika-ftiba.info/teknika/sigma/https://www.teknika-ftiba.info/jurnal/mpo/https://www.teknika-ftiba.info/ojs/pasarantogel2/https://www.unjc.cu/depo10k/https://untref.edu.ar/uploads/demo/gates-of-olympus/https://untref.edu.ar/uploads/demo/sweet-bonanza/https://fjot.anfe.fr/https://tokorumput.com/wp-content/slot-depo-10k/https://classyfm.co.id/frontend/sigmaslot/https://nrais.dgda.gov.bd/public/pasarantogel2https://revistas.unap.edu.pe/demo-slot-zeus-vs-hades/https://revistas.unap.edu.pe/slot-kamboja-bet-100/https://jltl.com.tr/zeus-slot/https://mediapencerahanbangsa.co.id/https://optimum.uwb.edu.pl/docs/mpo/https://newhealthconcept.net/wp-includes/demo-slot-zeus-vs-hades/https://sijms.szabist-isb.edu.pk/wp-includes/pasarantogel2/https://journals.asmarya.edu.ly/pasarantogel2/https://pdamindramayu.co.id/images/luar/https://pdamindramayu.co.id/demo/https://learning.modernland.co.id/git/slot-depo-10k/https://newhealthconcept.net/wp-content/akun-pro-kamboja/https://bundamediagrup.co.id/zeus/https://bundamediagrup.co.id/luar-negeri/https://bundamediagrup.co.id/maxwin-pragmatic/https://bundamediagrup.co.id/khmer/slot/https://khnnra.edu.ua/wp-includes/demo-slot-zeus-vs-hades/https://khnnra.edu.ua/wp-content/akun-pro-platinum/https://vtik.net/slot-kamboja/index.phphttps://aihc.amexihc.org/toto/http://himatikauny.org/wp-includes/zeus/https://iedi.edu.br/wp-includes/slot-kamboja-bet-100/https://iedi.edu.br/wp-content/bandito/https://www.unjc.cu/starlight-princess/https://www.unjc.cu/demo-slot-zeus-vs-hades/https://cstvcnmt.gialai.gov.vn/demo/https://sedimentologia.org.ar/slot-depo-10k/https://conference.vestnik-vsuet.ru/https://bundamediagrup.co.id/wp-includes/mpo/https://bundamediagrup.co.id/wp-includes/sv388/http://himatikauny.org/wp-includes/akun-pro-platinum/https://procesolocal2024.ieebcs.org.mx/vendor/zeus-vs-hades-demo/http://himatikauny.org/wp-content/slot-kamboja-bet-100/https://procesolocal2024.ieebcs.org.mx/js/https://journal.dntb.gov.ua/slot-depo-10k/https://fjot.anfe.fr/js/https://blog.indoamerica.edu.ec/wp-includes/slot-kamboja-bet-100/https://investigacion.indoamerica.edu.ec/wp-content/wild-bandito/https://portalderevistas.uam.edu.ni/public/zeus-vs-hades/https://portalderevistas.uam.edu.ni/public/pasarantogel2/https://perhepi.org/fae/akun-pro-jepang/https://ejournal.aibpmjournals.com/gates-of-olympus/https://ucardioj.com.ua/classes/https://ois.unsa.ba/wild-bandito/https://journals.qmu.ac.uk/controllers/https://journals.qmu.ac.uk/classes/https://ucardioj.com.ua/slot-depo-10k/https://journals.qmu.ac.uk/sv388/https://journals.qmu.ac.uk/api/depo-10k/https://ois.unsa.ba/slot-deposit-pulsa/http://103.165.243.97/doc/git/https://www.chiesadellarte.org/https://www.rollingcarbon.org/https://www.savebugomaforest.org/https://www.sigmaslot-profil.com/https://www.doxycycline365.com/https://thailottonew.site/https://hipnose.in/https://tennishope.orghttps://serenityprime.net/https://revista.farol.edu.br/uploads/pt2/https://civitic.indoamerica.edu.ec/wp-includes/pasarantogel2/https://journals.uol.edu.pk/classes/pasarantogel2/http://snabm.unim.ac.id/api/http://snabm.unim.ac.id/classes/slot-luar-negeri/http://103.165.243.97/doc/unsign/akun-pro-platinum/http://103.165.243.97/doc/word/mposlot/https://352spb.edusite.ru/slot-depo-10k/https://bundamediagrup.co.id/depo10k/https://loa.tsipil-uii.ac.id/sg-gacor/http://snabm.unim.ac.id/depo-10k/http://snabm.unim.ac.id/lib/slot-maxwin/http://103.165.243.97/doc/luar-negeri/http://103.165.243.97/doc/sign/slot-thailand/http://103.165.243.97/doc/before_tte/zeus-slot/https://appv2.tanahlautkab.go.id/doc/mpo/https://www.chuka.ac.ke/gates-of-olympus-1000/http://103.165.243.97/doc/kamboja/http://mysimpeg.gowakab.go.id/mysimpeg/bangkomplit/http://mysimpeg.gowakab.go.id/toto/http://mysimpeg.gowakab.go.id/mysimpeg/maxwin/https://jurnal.jsa.ikippgriptk.ac.id/public/luar/https://www.unjc.cu/sweet-bonanza/http://103.165.243.97/doc/dana/