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ABSTRACT

The wavelength is that natural scale that deter-
mines the applicability domains of the ray approxi-
mation and the wave approximation of light. If the 
change of the radiation power spatial density is sig-
nificant at the wavelength scale, then we deal with 
the light diffraction phenomenon, which is a subject 
to the wave optics. Consider the diffraction phenom-
enon at the diaphragm. It is possible to distinguish 
the near zone with significant wave inhomogene-
ities (i.e. the Fresnel zone) and the far Fraunhofer 
diffraction zone, in which the wave becomes close 
to homogeneous (the so-called quasi-homogeneous) 
and the ray approximation is possible. The prob-
lem is that there is no explicit relationship between 
the radiance of the rays before and after diaphragm. 
Method for determining the boundary conditions 
for the radiance in the Fraunhofer zone through 
the radiance of the incident radiation is proposed 
in the paper. This approach for computing the ra-
diance field in the Fraunhofer zone can be gener-
alized to other problems of optics, thereby provid-
ing the possibility of using computationally efficient 
ray-approximation-based methods to determine the 
light fields.

Keywords: diffraction, geometrical optics, wave 
optics, photometry, quasi-heterogeneity

1. INTRODUCTION

Diffraction is considered as one of the main man-
ifestations of the wave nature of light [1]. However, 
nowadays, this is most likely related to the school 
physics course, where it is customary to antagonize 
the wave representation of light against the ray ap-
proximation, which is a consequence of the meth-
odology of classical science in physics. We study 
any physical phenomenon or object using a specif-
ic probe, tester, or test receiver. Still, in classical 
physics it has always been assumed that the latter 
can always be made negligible, and thus the prop-
erties of the object itself can be formulated. Using 
the quantum mechanics concepts, it became obvious 
that we cannot go beyond the description of the tes-
ter-object interaction, and in any physical phenom-
enon there is some probe scale (related to the criti-
cal size), such that any attempt to further reduce the 
receiver’s size violates the established physical de-
scription of the object.

A feature of optics is that two types of receivers 
can be distinguished, namely, quadratic and linear 
receivers. A quadratic receiver responds to the en-
ergy it absorbs, while a linear one is a sort of anten-
na, the reaction of which is proportional to the field 
strength. Accordingly, each of the measurement 
processes generates its field: the quadratic receiver 
generates the light or radiation field, while the linear 
receiver generates the wavefield [2]. Essentially, the 
light field is the rays propagating in various direc-
tions along which power flows with spatial density 
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( )ˆ, ,L tr I , i.e. the radiance of the light field at point 
r, time t, in the direction Î . The wave field charac-
terizes the spatial-temporal distribution of the elec-
tric field intensity E(r, t). Its structure can be repre-
sented as a superposition of random waves in space.

As the energy is a quadratic quantity concerning 
the electric field, then all the properties of the light 
field can be expressed in terms of the properties of 
the wave field. However, only quadratic receivers 
exist in the optical spectral range. A linear receiver 
can be set up by placing an optical device, such as 
an aperture, in front of the quadratic receiver. If the 
diaphragm dimensions are smaller than a specific 
size parameter λ, then the field after the diaphragm 
will be a wave one, however, we can still measure 
its characteristics only with a quadratic receiver. In 
the simplest case of a homogeneous monochromat-
ic wave λ is the wavelength.

If the amplitude (i.e. intensity) of the wavefield 
and the energy density (i.e. power) of the light field 
does not change in space, then the field is called ho-
mogeneous, and both description models are es-
sentially equivalent to each other: at each point in 
space, the ray is perpendicular to the wave front. 
The wave front acts as a function, which describes 
all possible ray paths. If the field is inhomogeneous, 
especially when the spatial scale of the field change 
becomes of the order or less than λ, then the ray ap-
proximation is not valid anymore. In the narrow 
sense of the word, this phenomenon is commonly 
called diffraction.

The field of the diffracted wave right after the di-
aphragm can be represented as a superposition [1] 
of a strongly inhomogeneous component, decreas-
ing with distance r from the diaphragm faster than 
1/r, and a quasi-homogeneous component, slow-
ly changing over the scale of λ and decreasing as 
1/r. Therefore, the field at the diaphragm is strong-
ly inhomogeneous (that is the Fresnel zone), but at 
a certain distance, the Fraunhofer zone can be dis-
tinguished, where the wave is again quasi-homoge-
neous and can be treated in the framework of the ray 
approximation. In a general case, the field pattern 
after diffraction at a circular aperture of radius a can 
be represented as shown in Fig. 1.

The analysis is based on the idea that diffrac-
tion generates at each point of the diaphragm a di-
vergent beam with a divergence angle ~ /m aα λ , 
corresponding to the size of the Airy disk [1]. If the 
overlapping of spots of beams at the distance z from 
the diaphragm aperture is /mz z a aα λ⋅ ≈ , then 

the impact of diffraction is negligible, and the field 
can be described in term of the ray approximation, 
wherein the radiance of the rays passing through 
the diaphragm is equal to the radiance of the inci-
dent radiation. If the overlapping of the spots is sig-
nificant (i.e.  /z a aλ ≈ ), which corresponds to the 
Fresnel zone, the field is determined by the interfer-
ence of the beams generated at each point of the di-
aphragm. It becomes substantially inhomogeneous, 
and the ray approximation cannot be applied. In 
the Fraunhofer zone we have /z a aλ , and the 
beams generated at all diaphragm points are strong-
ly mixed, the field becomes quasi-homogeneous, 
and the ray approximation comes into play. Howev-
er, the radiance of the rays is no longer determined 
by the radiance of the incident, but rather by the 
laws of diffraction.

The problem is that the connection between the 
rays before and after the diaphragm is not apparent. 
It can only be determined through the properties of 
the wavefield right after the diaphragm [3]. The goal 
of this paper is to derive a relationship of the spa-
tial-angular radiance distributions ˆ( , )L r I  of station-
ary light fields before and after the diaphragm.

2. WAVE DIFFRACTION AT THE EXIT 
PUPIL OF THE OPTICAL SYSTEM

According to the Abbe principle (Abbe Ernst, 
1840–1905) [5], the structure of the optical image 
can be studied in the geometric optics approxima-
tion, considering the wave diffraction at the exit 
pupil. Let us consider a sharp image from a point 
lying on the optical axis. As we must have a spher-
ical wave focusing on the image point in the plane 
of analysis, the wave in the plane of analysis is 
quasi-homogeneous.

Let the complex amplitude of the wave passing 
through the optical system (OS) in the plane of the 

Fig. 1. Distribution of the irradiance (red line) as a function 
of the distance to the diaphragm aperture z
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exit pupil be U(r), where r is the radius-vector in 
the plane of exit pupil Σ (as shown in Fig. 2). Then 
the field immediately after the pupil is expressed 
through the pupil function Θ(r):

( ) ( ) ( ),U Ur r rΣ = Θ  (1)

where the pupil function is 
1, ,

( )
0, .

r
r

r
∈Σ

Θ =  ∉Σ
In the view of eq. (1), the expression for the cor-

relation function of the field right after the exit pu-
pil reads:
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1 2 1 2
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where 1 2( , )o r rΓ  is the correlation function of ra-
diation passing though the OS on the plane of exit 
pupil.

Introducing the local coordinates in the plane of 
the exit pupil Σ, i.e.

1 2
1 2 1 2, , ,

2 2 2
r rR r r r R r R+= = − = + = −ρ ρ

ρ , (3)

yields

( , ) ( , ) .
2 2oR R R RΣ

   Γ = Γ Θ + Θ −      
ρ ρ

ρ ρ  (4)

Using our assumption that the field before the 
exit pupil can be computed in the ray approxima-
tion (which is equivalent to the quasi-homogeneous 
field assumption), we can express o ( , )RΓ ρ  through 
the generalized radiance in the Wigner spectrum 
form [3, 4]:

ˆ
o

ˆ ˆ( , ) ( , ) ,ik
oL e dlR R l l



−Γ = ∫ ρρ   (5)

where ˆ( , )oL R l  is the radiance of the radiation pass-
ing through the OS in the plane of the exit pupil.

Then the radiance of the quasi-homogeneous 
part after the exit pupil, which forms the image in 
the plane of analysis, reads as follows [3]:

2
2( , ) ( , )e ,

2
ik

z
kL l dlR l R ρ
π

⊥′
⊥ Σ

 = Γ′    ∫ ρρ  (6)

where l⊥′  is the vector of projection l  onto the nor-
mal to the image plane, while l̂  is defined according 
to Fig. 3 as follows:

2 2

ˆ( )ˆ .
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R
R
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− +=
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Substituting eq. (4) in eq. (6) gives

 (8)

Introducing

( )

2
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eq. (8) can be written as a convolution:

2
o( , ) ( , ) ( )L L h d lR l R l l l⊥ ⊥ ⊥ ⊥ ⊥= −′ ′∫ . (10)

Thus, the wave diffraction at the exit pupil ac-
quires a clear ray interpretation of light scattering, 
while ( )h l l⊥ ⊥−′  is a function of light scattering.

Fig. 3. The scheme of image formation in the optical sys-
tem bounded by diffraction

Fig. 2. The exit 
pupil of the optical 
system
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3. OPTICAL TRANSFER FUNCTION 
OF AN IDEAL OPTICAL SYSTEM

To validate the derived relations, let us consid-
er the optical transfer function (OTF) of a non-ab-
errational thin lens, the frame of which also serves 
as the exit pupil in the presence of defocusing. The 
technique of computing the OTF of such a sys-
tem is well known from wave optics [1]. For this, 
we consider an isotropic point source with a lumi-
nous intensity Io on the optical axis having a stig-
matic image in the analysis plane at a distance Ro 
along the optical axis from the plane of the exit pu-
pil (as shown in Fig. 3). The irradiation distribution 
from it will be the point scattering function (PSF), 
the Fourier transform of which provides the desired 
OTF. The radiance of the beam in this case on the 
plane of the diaphragm can be expressed as follows:

o o
o

( , )L I
R
RR l lδ ⊥

⊥ ⊥ ⊥

 
= +′ ′  

. (11)

Substituting eq. (11) into eq. (8) and expressing 
the result using coordinates , R l⊥ ⊥, we obtain

 (12)

Here we made use the following geometrical 
properties (see Fig. 3):

o
2

2o
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, ,

, .

R R R R
R R d Rd l

R R

r R R r Rl l β

β
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⊥

−
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−
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The expression for the irradiance on the plane of 
analysis reads as

2

( ) ( )

ˆ( ) ( , ) ( , )z zE L l d L l d lr r l l r l
+ +

⊥ Σ ⊥ ⊥ Σ ⊥ ⊥
Ω Ω

= =∫ ∫ , (14)

or, making use of eq. (12):

 (15)

here it is taken into account that 1zl l ≈′  under 
paraxial optics conditions.

OTF OS is the Fourier transform of irradiance 
distribution:

2( ) ( )e iH E d rrr ⊥−
⊥ ⊥= ∫ νν ,  (16)

and using eq. (15), we obtain

  (17)

Note one obvious formula:

2expk ki d r
R R

rδ ⊥ ⊥
    − = −        ∫

ρ ρ
ν ν , (18)

which can transform eq. (17) to the following form:

, (19)

where, with (18), the constant is defined

2
R R
k

λα
π

= = . (20)

Let us compute OTF of the optical system for 
zero spatial frequency:

2 2
o o(0) ( )H I d R a IR π⊥ ⊥= Θ =∫ . (21)

Note that H(0) corresponds to the transmittance 
of the optical system.

Then we can express relative OTF (i.e. the mod-
ulation transmission function) as follows:

 (22)

Fig. 4. To definition 
of the limits of inte-
gration in eq. (22)
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Let us consider the impact of defocusing on the 
OTF of the optical system. From Fig. 4, it follows 
that

2
2 2

2
x y aα − + =  

ν , (23)

and this allows to define the integration limits in eq. 
(22):

2 2 2 2
1 2

2 2
2

12
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and express the integral as
2

2 2 2

2 2

2 2
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T dx dy
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Note that the integration over dx can be easily 
computed:

.  (26)

The integral takes a simpler form for further 
analysis

2
1

2
2

0

4( ) sin 1
2

w

wT w w t dt
w

γ
πγ

 −     = − −    ∫ , (27)

if we switch to the following dimensionless 
variables:

2

2
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2, .

R R y aw t
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ka a aka
R R
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λ
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Fig. 5 shows the OTFs for several values of rel-
ative defocusing parameters γ.

Note that if there is no defocusing, which is 
equivalent to 0β →  and, hence, 0γ → , we have

2 2

0

1 sin 1 1lim 2 2
w ww t t

wγ
γ

γ→

  − − = − −    
, (29)

and eq. (27) is reduced to the expression for the 
OTF for the OS with diffraction at the exit pupil:

2
1

2
2

0

2

4( ) 1
2

2 arccos 1 ,
2 2 4

w

wT w t dt

w w w

π

π

 −  
 = − − =  
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∫

, (30)

which completely corresponds to the formula de-
rived in the framework of the diffraction theory 
[6–8].

In [7], eq. (30) is expressed in terms of Bes-
sel functions, which allows one to obtain the as-
ymptotic formula for T(w) for large values of γ. It 

Fig. 5. Influence of 
defocusing on OTF 
of the ideal optical 
system, bounded 
by diffraction
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is straightforward to see that the impact of diffrac-
tion blurring becomes negligible when the defocus-
ing parameter increases. At the same time, the blur 
function for a point is defined by the geometrical 
optics, and the blur spot turns into a uniformly il-
luminated disk. In this case, the OTF as a Fourier 
transform from a uniformly luminous disk is giv-
en by a first-order Bessel function for its argument.

4. CONCLUSION

We have proposed a method for determining 
the relationship between the radiance of the light 
fields before the diaphragm and in the Fraunhofer 
zone after the diaphragm. This method can de-
scribe all phenomena related to image formation 
in an ideal optical system. Therefore, the compu-
tationally efficient ray approximation can be ap-
plied to the image analysis in the optical system, 
where the diaphragms are treated as scattering el-
ements with the corresponding point spread func-
tions (PSFs) according to eq. (9). Moreover, since 
the Fraunhofer zone is of considerable practical in-
terest, this approach can be generalized and devel-
oped for other problems. For example, nowadays, 
scattering by particles of complex shape is treated 
not according to Mie theory [9], but rather based 
on geometrical optics, in which the wave effects 
(for example, diffraction, surface wave, and edge 
effect) are neglected. By imposing new boundary 
conditions for the scattered rays in the Fraunhofer 
zone, it is possible to include these effects in the 
ray optics models.
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