Оптический метод обнаружения нефтяных загрязнений на водной поверхности в УФ спектральном диапазоне

М.Л. БЕЛОВ ¹, Ю.И. ВСЯКОВА, В.А. ГОРОДНИЧЕВ НИУ «МГТУ им. Н.Э. Баумана», Москва ¹ E-mail: belov@bmstu.ru

Аннотация

Проведён анализ эффективности оптического (фотои радиометрического) метода обнаружения нефтяных загрязнений, основанного на различии в отражательных характеристиках чистой и загрязнённой нефтью водных поверхностей, при выборе длины волны зондирования в УФ, видимом, ближнем и среднем ИК диапазонах спектра. Показано, что с точки зрения безопасности для глаз, широты интервала толщин обнаруживаемых плёнок нефти и ослабления в атмосфере наиболее перспективным для мониторинга нефтяных загрязнений является зондирование в УФ диапазоне на длине волны 0,355 мкм, что позволяет надёжно обнаруживать плёнки нефти толщиной не менее 2 мкм с вероятностью правильного обнаружения более 0,9 и вероятностью ложных тревог менее 0,002 при относительном шуме измерений не более 5 %.

Ключевые слова: дистанционный оптический метод, безопасные для зрения длины волн излучения, УФ диапазон спектра, нефтяные загрязнения на водной поверхности, обнаружение.

1. Введение

Проблема охраны окружающей среды, и в первую очередь, воздушного и водного бассейнов, – одна из важнейших на сегодняшний день [1–6].

Из загрязнителей океанов, морей, озёр и рек нашей планеты одно из первых мест принадлежит нефти и продуктам её переработки. Основные факторы нефтяных загрязнений морских, озёрных и речных акваторий – катастрофы с морскими судами (особенно с танкерами), нефтедобыча на морских шельфах, аварии на нефтепроводах (особенно на переходах через реки, каналы, озёра и водохранилища), повреждения подводных хранилищ нефтепродуктов и утечки их содержимого, речной сток и др. [2, 4, 7–10].

Наиболее опасны по частоте и объёму разливов нефти катастрофы с нефтеналивными судами и катастрофы при нефтедобыче на шельфе, а также аварии нефтепроводов, хранилищ нефти и нефтепродуктов (когда утечки определяются контрольными приборами). В этих случаях факт аварийных разливов нефти, как правило, известен и встаёт задача картирования пятна нефтяного загрязнения и контроля его эволюции во времени.

Не менее важна задача обнаружения нефтяных загрязнений, когда утечки не определяются контрольными приборами, и при различных авариях, когда информацию о них не сообщают. Для предотвращения экологических последствий таких загрязнений желательно обнаруживать их на как можно более ранней стадии.

Статья посвящена разработке оперативного дистанционного оптического (фото- и радиометрического) метода обнаружения нефтяных загрязнений на водной поверхности.

2. Постановка задачи

Быстрый рост загрязнений водной среды нефтепродуктами обусловливает необходимость развития методов и аппаратуры для их оперативного обнаружения.

В наибольшей степени всем требованиям к средствам обнаружения нефтяных загрязнений удовлетворяют дистанционные методы, позволяющие инспектировать обширные акватории за небольшой промежуток времени и проводить как обнаружение, так и картирование загрязнений.

Для оперативного дистанционного обнаружения нефтяных загрязнений на водной поверхности, особенно в прибрежных районах морей и на ранней стадии разлива, наиболее подходят самолётные носители.

Разливы нефти можно дистанционно обнаруживать как пассивными, так и активными методами [4, 10–20].

С помощью пассивных методов регистрируют отражённое от поверхности моря солнечное излучение, радиотепловое излучение поверхности в СВЧ диапазоне или тепловое излучение в ИК области спектра. Однако все пассивные методы обнаружения имеют недостатки. Применение первого возможно лишь в дневное время и при благоприятных погодных условиях, основной недостаток второго – невозможность обнаружения плёнок толщиной менее 100 мкм и существенное влияние волнения моря, а недостатком третьего является то, что температурный контраст «нефтяное загрязнение – чистая поверхность воды» сильно зависит от толщины плёнки, гидрометеорологических условий и времени суток и может быть как положительным, так и отрицательным.

При активных методах для облучения поверхности моря используют какой-нибудь источник излучения – радиолокационную станцию или оптический локатор. Обнаружение нефтяных загрязнений радиолокационным методом основано на том, что нефтяная плёнка уменьшает ВЧ составляющие волнения. Его основной недостаток в том, что на водной поверхности присутствуют и другие (не связанные с нефтяным загрязнением) участки со сглаженным волнением, которые могут создаваться выходом внутренних волн, плёнками поверхностно активных веществ, ветровой тенью за островами или крутым берегом и т.п. Поэтому возникает проблема отличения зон нефтяных загрязнений от других участков поверхности со сглаженным ветровым волнением. Кроме того, при штиле и слабом ветре радиолокационный метод не может обнаруживать нефтяные загрязнения (при этих условиях рябь на поверхности отсутствует или очень мала). Обнаружение нефтяных загрязнений активными оптическими методами возможно в любое время суток и основано на различии отражательных или флуоресцентных характеристик чистой и загрязнённой нефтепродуктами водных поверхностей.

В обзорах по системам оптического зондирования указывается, что их основной недостаток – существенная зависимость от атмосферных условий. Это действительно так, если говорить о всех системах оптического зондирования вообще. Однако для авиационных систем этот недостаток сильно сглажен (атмосфера существенно неоднородна по вертикали, и основной вклад в ослабление излучения даёт относительно тонкий, около 50–100 м, приземный слой).

В настоящее время известен ряд активных оптических методов обнаружения нефтяных загрязнений. Например: 1) флуоресцентный позволяет проводить обнаружение нефтяных загрязнений на водной поверхности, измерение толщины плёнок нефтепродуктов и их классификацию, однако для большинства флуоресцентных лидаров дальность (высота) зондирования не превышает 100–150 м; 2) метод активной оптической локации, основанный на различии отражательных характеристик чистой и загрязнённой нефтепродуктами водных поверхностей. Его достоинства – относительная простота аппаратуры и возможность зондирования с больших высот.

Анализ существующих методов обнаружения нефтяных загрязнений водной поверхности [4,10–20] показывает, что аппаратура оптического дистанционного зондирования является наиболее эффективным вариантом для оперативной системы мониторинга нефтяных загрязнений. При этом перспективным представляется комплексирование [4, 10] флуоресцентного лидара с оптическим локатором, позволяющим проводить анализ характеристик отражения водной поверхности с высоты в несколько километров (при большой высоте полёта самолётная аппаратура обеспечивает большую полосу мониторинга на водной поверхности).

Соответственно, данная статья, посвящена разработке фото- и радиометрического метода обнаружения нефтяных загрязнений на водной поверхности на безопасной для зрения длине волны (λ) зондирования.

3. Оптический метод, основанный на различии отражательных характеристик чистой и загрязнённой нефтепродуктами водных поверхностей

Физической основой обнаружения нефтяных загрязнений оптическим методом является контраст потока регистрируемого лидаром излучения, отражённого от чистой водной поверхности и водной поверхности с нефтяным загрязнением.

Контраст обусловлен двумя причинами: нефтяные загрязнения увеличивают коэффициент отражения (например, на λ 1,06 мкм коэффициент отражения чистой морской поверхности равен около 0,02, а коэффициент отражения толстой плёнки нефти – порядка 0,04), и нефтяные плёнки сглаживают волнение водной поверхности [4, 21– 23].

Контраст К «чистая водная поверхность – поверхность с нефтяными загрязнениями» обычно определяется как

$$K = \frac{P_{\rm oil}}{P_{\rm w}},$$

где P_w и P_{oil} – мощности сигнала, регистрируемого от чистой водной поверхности и поверхности с нефтяными загрязнениями.

Формулу для этого контраста можно получить, используя выражение для средней мощности [4, 24], регистрируемой оптическим локатором при моностатическом зондировании взволнованной водной поверхности:

(1)

 $K = K_V K_{v \sigma},$

где

$$K_{V} = \frac{V_{2}^{2}}{V_{1}^{2}},$$

$$K_{\gamma,\sigma} = \frac{(\gamma_{1x}^{2}\gamma_{1y}^{2})^{1/2}}{(\gamma_{2x}^{2}\gamma_{2y}^{2})^{1/2}} \exp\{-\frac{q_{x}^{2}}{2q_{z}^{2}}[\frac{1}{\gamma_{2x}^{2}} - \frac{1}{\gamma_{1x}^{2}}]\} \times$$

$$\times [\frac{\tau^{2}c^{2}}{16} + 2\sigma_{1}^{2} + \sin^{2}\theta / (C_{s} + C_{r})}{\frac{\tau^{2}c^{2}}{16} + 2\sigma_{2}^{2} + \sin^{2}\theta / (C_{s} + C_{r})}]^{1/2},$$

$$q_{x} = 2\sin\theta, q_{z} = 2\cos\theta,$$

 θ – угол зондирования (между направлением оптической оси оптического локатора и направлением в надир), σ^2 и $\gamma_{x,y}^2$ – дисперсии высот и наклонов (по некоторым осям х и у) волнения, V^2 – коэффициент отражения плоского (без волнения) участка водной поверхности, τ – длительность импульса локатора, $C_{s,r} = (\alpha_{s,r}L)^{-2}$ (для прозрачной атмосферы), $2\alpha_{s,r}$ – углы расходимости источника излучения и поля зрения приёмной оптической системы, L – высота полёта носителя.

Величины V, γ , σ с индексом 1 относятся к чистой водной поверхности, а с индексом 2 – к водной поверхности с нефтяными загрязнениями.

При получении формулы (1) полагалось, что пена на водной поверхности не образуется (скорость ветра невелика), наклоны морской поверхности малы: $\gamma_{x,y}^2 \ll 1$, $\alpha_{x,y}^2 \ll \gamma_{x,y}^2$, пятно подсвета на поверхности и высоты волнения морской поверхности малы по сравнению с *L*.

Отметим, что формула (1) получена при использовании выражений для средней принимаемой мощности. Поскольку частота повторения импульсов самолётного лидара может составлять сотни Гц и даже десятки кГц, то размер участков на водной поверхности, на которых проводится усреднение принимаемой мощности, может составлять единицы и первые десятки метров даже при высокой скорости полёта авиационного носителя. Например, при частоте повторения импульсов 1 кГц и скорости полёта авиационного носителя 100 м/с (обычная скорость при проведении измерений) на интервале времени регистрации 0,1 с (что соответствует 10 м вдоль трассы полёта носителя) будет происходить накопление 100 импульсов (что вполне достаточно для оценки среднего значения принимаемой мощности). Выбор высоты полёта при этом определяется мощностью источника излучения (которая, в свою очередь, зависит от частоты повторения импульсов).

В формуле (1): сомножитель $K_{\gamma,\sigma}$ описывает контраст «чистая водная поверхность – поверхность с нефтяными загрязнениями», вызванный сглаживанием плёнкой нефтепродукта волнения водной поверхности, а сомножитель K_V – контраст «чистая водная поверхность – поверхность с нефтяными загрязнениями», вызванный различием коэффициентов отражения чистой водной поверхности и водной поверхности с нефтяными загрязнениями; величина V_2^2 – коэффициент отражения трёхслойной системы «воздух – плёнка нефтепродукта – чистая водная поверхность», а величина V_1^2 – коэффициент отражения двуслойной системы «воздух – чистая водная поверхность».

Формулы для V_2^2 и V_1^2 имеют следующий вид (см.,

напр., [4, 21]):

$$V_{2}^{2} = \left| \frac{(Z_{1} + Z_{2})(Z_{2} - Z_{3})e^{-i\alpha(\lambda)d} + (Z_{1} - Z_{2})(Z_{2} + Z_{3})e^{i\alpha(\lambda)d}}{(Z_{1} + Z_{2})(Z_{2} + Z_{3})e^{-i\alpha(\lambda)d} + (Z_{1} - Z_{2})(Z_{2} - Z_{3})e^{i\alpha(\lambda)d}} \right|^{2}$$
(2)

$$V_1^2 = \frac{(1-n_2)^2 + k_3^2}{(1+n_2)^2 + k_3^2},$$
(3)

где $Z_j = \frac{2}{m_j}; \ \alpha(\lambda) = \frac{2\pi}{\lambda} m_2; \ d$ – толщина плёнки нефте-

продукта на водной поверхности; $m_j = n_j + i \cdot k_j$ – комплексный показатель преломления *j*-й среды (для воздуха $m_1 = n_1 = 1$), а n_j и k_j – его действительная и мнимая части; индексы 1, 2, 3 соответствуют воздуху, нефти и воде.

 V_1^2 определяется только соответствующими n_j и k_j , а

 V_2^2 сложным образом (из-за интерференции излучения,

отражаемого от границ раздела «воздух – плёнка нефтепродукта» и «плёнка нефтепродукта – вода») зависит от оптических характеристик воды и нефтепродукта, λ зондирования и толщины плёнки нефтепродукта *d*.

Сразу после разлива нефти на водной поверхности (например, при аварии на нефтепроводе или нефтехранилище, крушении нефтеналивного судна и т.п.) толшина плёнки может составлять несколько сантиметров. Из-за растекания нефти по поверхности моря толщина плёнки уменьшается до 1,0-0,1 мм и менее. Важен вопрос о толщине нефтяного пятна, при достижении которой пятно нефтяного загрязнения перестаёт существовать как единое целое [4]. В зависимости от сорта нефти эта толщина обычно находится в пределах от 4 до 100 мкм. При этом имеются многочисленные данные измерений толщины плёнок разных нефтей и нефтепродуктов как в натурных, так и в лабораторных условиях, в которых была получена меньшая (чем 4 мкм) толщина плёнок нефтепродуктов [10].

Мониторинг нефтяных загрязнений в наиболее простом варианте проводят, регистрируя сигнал, отражённый от водной поверхности, и определяя контраст между уровнем мощности оптического сигнала от чистой водной поверхности (его регистрируют, например, при пролёте на самолёте над акваторией без нефтяных загрязнений) и – от водной поверхности вдоль трассы полёта [4, 13, 25].

Однако сегодня нет ясности, какая λ зондирования в оптическом диапазоне наиболее предпочтительна для обнаружения нефтяных загрязнений: контрасты «чистая водная поверхность – нефтяное загрязнение» сложным образом зависят от λ , толщины плёнки нефтепродукта и типа нефтепродукта. Кроме того, при разработке оптической аппаратуры для дистанционного зондирования необходимо учитывать степень опасности для зрения лазерного излучения.

4. Выбор безопасных для зрения лазерных источников излучения

Функционирование активных оптических систем дистанционного зондирования всегда связано с опасностью для органов зрения человека. Однако не всё равно, на какой λ излучения система дистанционного зондирования работает.

Излучение в видимом и ближнем ИК спектральных диапазонах (0,38–1,4 мкм) может вызывать повреждение сетчатки, а УФ излучение в диапазоне λ 0,18–0,38 мкм и ИК излучение в диапазоне $\lambda > 1,4$ мкм воздействуют на передние среды глаза и считаются более безопасными [26, 27].

Рис. 1 [26] иллюстрирует безопасность для глаз излучений на разных λ (при параметрах аппаратуры, характерных для систем активного оптического зондирования, при длительности импульса 6 нс, частоте повторения импульсов 100 Гц и диаметре оптического пучка 50 мм).

Требование безопасности для глаз приводит к необходимости выбора между УФ (λ 0,18–0,38 мкм), ближним и средним ИК ($\lambda > 1,4$ мкм) диапазонами. Выбор должен основываться на анализе эффективности использования этих диапазонов для обнаружения нефтяных загрязнений на водной поверхности.

> Рис. 1 Спектральная зависимость максимальной безопасной для глаз энергии лазерного импульса

Рис. 2. Высотное распределение атмосферного озона

В указанных ИК диапазонах, на $\lambda > 1,4$ мкм, из-за сильного поглощения парами воды и CO_2 наиболее перспективные λ зондирования ограничены окнами прозрачности земной атмосферы 1,5–1,8 мкм, 2,1–2,4 мкм (источники излучения на эрбиевом стекле, на иттрий-алюминиевом гранате с легированием гольмием, оптические параметрические генераторы) и 8–12 мкм (источник излучения на CO_2).

В диапазоне λ 0,18–0,38 мкм из-за поглощения (в коротковолновой части этого диапазона) кислородом и озоном наиболее перспективной для аппаратуры дистанционного зондирования является λ 0,355 мкм (третья гармоника источника излучения на иттрий-алюминиевом гранате с легированием неодимом).

Существующие сейчас источники излучения на λ 0,355 мкм (например, *Ekspla NL230–100*) имеют при частоте повторения сотни Гц–единицы кГц и длительности импульсов 5–10 нс энергию в импульсе сотни мкДж–единицы мДж, что позволяет проводить зондирование с высот порядка нескольких километров (при диаметре приёмного объектива порядка 6–10 см). Выбор размера пятна подсвета на морской поверхности определяется требованием к минимально обнаружимому размеру разлива нефти на морской поверхности.

Отметим, что УФ спектральный диапазон представляет интерес для самолётных лазерных систем зондирования тем, что поглощение атмосферным озоном УФ излучения происходит в основном в верхних слоях атмосферы. На рис. 2 [28] показано общее распределение в атмосфере озона по высоте над уровнем моря. В нижнем слое тропосферы концентрация озона варьируется в зависимости от места наблюдения, но является небольшой (единицы мПа и менее [29]).

Ниже проводится оценка контрастов «чистая водная поверхность – нефтяное загрязнение» на безопасных для зрения λ зондирования в широком спектральном диапазоне – от УФ до среднего ИК диапазонов (0,355–10,6 мкм).

5. Анализ контрастов «чистая водная поверхность — нефтяное загрязнение» на безопасных для зрения длинах волн излучения в УФ, ближнем и среднем ИК спектральных диапазонах

На рис. 3–5 приведены зависимости контраста K_V (вызываемого различием коэффициентов отражения водной поверхности, покрытой плёнкой нефтяного загрязнения, и чистой водной поверхности) от толщины плёнки нефтяного загрязнения d на безопасных для зрения λ зондирования 0,355, 1,54 и 10,6 мкм соответственно.

Из этих рисунков видно, что при увеличении толщины плёнки нефтяного загрязнения контрасты K_V приближаются (колебательно) к своим некоторым постоянным значениям, которые равны контрастам двуслойной среды «воздух-нефтяное загрязнение» на соответствующих λ . Для λ зондирования 0,355, 1,54 и 10,6 мкм эти контрасты, соответственно, равны 1,84, 2,3 и 4,6.

Колебательный характер зависимости значения контраста от толщины плёнки нефтяного загрязнения делает работу оптического обнаружителя нефтяных загрязнений (в реальных условиях шумов измерений) неустойчивой в ближнем и в среднем ИК диапазонах.

На рис. 6 приведён пример результатов математического моделирования контраста K_V от толщины плёнки нефтяного загрязнения d на λ зондирования 1,54 мкм при относительном среднеквадратическом значении шумов измерения 5 %. На этом рисунке 1 означает контраст плёнки нефтяного загрязнения без учёта шумов измерения, 2 – контраст плёнки нефтяного загрязнения с учётом шумов, 3 – контраст чистой водной поверхности $K_V \equiv 1$ без учёта шумов, 4 – контраст чистой водной поверхности с учётом шумов. Видно, что из-за шумов для тонких плёнок нефти K_V периодически становится меньше 1. На λ 10,6 мкм этот эффект ещё больше, а в наименьшей степени он проявляется на λ 0,355 мкм.

Таким образом, несмотря на большие значения контрастов двуслойной среды «воздух – нефтяное загрязнение» в ближнем и, особенно, среднем ИК диапазонах, более перспективным (в смысле надёжности измерений при тонких плёнках нефти) является использование УФ спектрального диапазона (λ 0,355 мкм).

Для оценки надёжности работы в условиях шумов измерений проводились математическое моделирование и оценка вероятностей правильного обнаружения и ложных тревог при обнаружении нефтяных загрязнений.

6. Результаты математического моделирования вероятностей правильного обнаружения плёнки нефтепродуктов и ложных тревог

Математическое моделирование вероятности правильного обнаружения P_d (вероятности обнаружения нефтяного загрязнения, когда оно действительно есть) и вероятности ложных тревог P_a (вероятности обнаружения нефтяного загрязнения, когда в действительности его нет) в условиях шумов измерения проводилось на безопасных для зрения λ зондирования в УФ (0,355 мкм) и ближнем ИК (1,54 мкм) диапазонах спектра.

Значения действительной и мнимой частей показателей преломления воды и нефтепродукта на λ 0,355 мкм и 1,54 мкм были взяты из работы [21] (средние характеристики морской воды и нефти). Считалось, что шум измерения имеет нормальное распределение с нулевым средним значением. Относительное среднеквадратическое значение шумов задавалось в диапазоне 1–10 %.

При математическом моделировании толщины плёнок нефти на морской поверхности задавались в интервале 0,1–100 мкм (более толстые плёнки эффективно обнаруживаются, например, радиотепловыми методами). Учитывалось, что система импульсной активной оптической локации имеет возможность (используя спектральную, пространственную и временную фильтрацию) эффективно выделять сигнал на фоне аддитивных помех, и эти помехи влияют на работу системы только в виде дробового шума фотодетектора (вызываемого ими) [10]. Поэтому при решении задачи обнаружения плёнок нефтепродуктов проводилось сравнение сигналов, регистрируемых приёмником локатора в условиях шумов, от чистой водной поверхности и от поверхности с плёнкой нефтепродукта.

Рис. 6. Зависимость контраста K_V в условиях шумов от толщины нефтяной плёнки при σ = 5 % на λ 1,54 мкм

Решение о наличии плёнки нефтепродукта принималось при выполнении условия $K_V > K_{th}$ (контраст K_V между исследуемым и заведомо чистым участком водной поверхности больше порогового контраста K_{th}). Значение K_{th} выбиралось (вычислялось перед проведением моделирования) посредине между 1 (значением контраста, когда на исследуемой поверхности нет нефтяных загрязнений) и минимальным контрастом (минимальным значением K_V , которое всегда больше 1) в отсутствие шумов при заданной минимальной толщине плёнок (которые должны обнаруживаться по данным дистанционного зондирования).

На рис. 7 и 8 приведены результаты математического моделирования вероятностей правильного обнаружения (P_d) и ложных тревог (P_a) при относительном шуме измерения 5 % (по 1000 реализаций шума измерения) на безопасных для зрения λ зондирования в УФ спектральном диапазоне – на λ 0,355 мкм (рис. 7, *a* и б) и в ближнем ИК спектральном диапазоне – на λ 1,54 мкм (рис. 8, *a* и б).

Из рисунков видно, что при плёнках нефти толще 20 мкм вероятность правильного обнаружения на λ зондирования как 0,355 мкм, так и 1,54 мкм равна 100 %. Однако при более тонких плёнках (а они могут быть толщиной в единицы мкм и менее) ситуация совсем другая – при зондировании на λ 0,355 мкм можно надёжно обнаруживать плёнки нефти толщиной не менее 2 мкм с приемлемыми P_d (более 0,9) и P_a (менее 0,002) при относительном шуме измерения не более 5 %. В то же время при зондировании на λ 1,54 мкм P_d для плёнок нефти толщиной 2 мкм

Таблица

Параметр	1	2	3	4	5	6
n	1,565	1,559	1,560	1,549	1,528	1,527
$k \cdot 10^{3}$	20,1	16,5	11,4	8,4	5,6	4,8
P_d	0,9991	0,9990	0,9989	0,9982	0,9967	0,9960
P _a	0,031	0,0308	0,0312	0,032	0,0338	0,0332

Результаты математического моделирования влияния типа нефти на надёжность обнаружения нефтяных загрязнений

Рис. 8. Зависимость вероятностей правильного обнаружения *P_d* (*a*) и ложных тревог *P_a* (*б*) от толщины нефтяной плёнки на λ 1,54 мкм в интервале толщин 0–20 мкм

может принимать любые значения от 0 до 1 (в зависимости от случайной толщины плёнки в точке зондирования).

7. Анализ влияния типа нефти на характеристики обнаружения лазерным методом нефтяных загрязнений на водной поверхности

Энергетический расчёт оптического локатора и математическое моделирование P_d и P_a для задачи обнаружения нефтяных загрязнений на морской поверхности обычно проводится для средних характеристик нефти (см., напр., [4, 13, 25] и результаты, приведённые выше). Однако разные типы нефти имеют существенно разные оптические характеристики.

Для оценки влияния типа нефти на надёжность обнаружения нефтяных загрязнений проводилось математическое моделирование P_d и P_a для разных типов нефти в условиях шумов измерения на безопасной для зрения λ зондирования 0,355 мкм.

Считалось, что шум измерения (при регистрации коэффициентов отражения V_2^2 и V_1^2) распределён по нормальному закону с нулевым средним значением и относительным среднеквадратическим отклонением $\delta = 1-10$ %. Решение об обнаружении нефтяных загрязнений принималось при выполнении условия, что контраст $K_v = \frac{V_2^2}{V_1^2}$ больше K_{th} . Значение K_{th} выбиралось посредине между значением K_v для нефтяного загрязнения на морской поверхности и $K_v = 1$ (значение контраста для чистой водной поверхности).

В таблице (с использованием формул (1)–(3) и данных [30]) для разных типов нефти приведены их оптические характеристики (*n* и *k*) и результаты математического мо-

делирования (по 1000 реализаций шума измерения) P_d и P_a при толстой плёнке нефти (100 мкм), относительном среднеквадратическом значении шума измерения 10 % и одном пороговом алгоритме обнаружения. В таблице по горизонтали приведены типы нефтепродуктов: 1 – дизельное топливо и 2–6 – разные типы нефти, соответствующие разным месторождениям [30].

Из таблицы видно, что хотя для разных типов нефти (у которых n и k существенно различны) P_d и P_a различны, но эти различия невелики.

Таким образом, для обнаружения нефтяных загрязнений на водной поверхности методом активной оптической локации на безопасной для зрения λ 0,355 мкм может использоваться один алгоритм обнаружения для всех типов нефтепродуктов.

Заключение

Проведён сравнительный анализ эффективности работы оптического (фото- и радиометрического) метода обнаружения нефтяных загрязнений на водной поверхности, основанного на различии отражательных характеристик чистой и загрязнённой нефтепродуктами водных поверхностей, при выборе λ зондирования в УФ, видимом, ближнем и среднем ИК диапазонах спектра. Показано, что с точки зрения безопасности для глаз, широты интервала толщин обнаруживаемых плёнок нефтепродуктов и оптического ослабления в атмосфере наиболее перспективным для мониторинга нефтяных загрязнений является зондирование в УФ спектральном диапазоне – на λ 0,355 мкм. Оно позволяет надёжно обеспечивать обнаружение плёнок нефти толщиной не менее 2 мкм с вероятностью правильного обнаружения более 0,9 и вероятностью ложных тревог менее 0,002 при относительном шуме измерений не более 5 %.

СПИСОК ЛИТЕРАТУРЫ

1. *Grec A., Maior C.* Earth oil extraction – major environmental pollution source // Environmental Engineering and Management Journal.– 2008. – Vol. 7, No. 6. – P. 763–768.

2. Marine Pollution: New Research/ Hofer T.N. (ed.). – N. Y.: Nova Science Publishers Inc., 2008.– 423 p.

3. Катаев М.Ю., Лукьянов А.К. Моделирование отражённого солнечного излучения для оценки газового состава атмосферы при оптическом дистанционном зондировании из космоса // Светотехника.– 2017.– № 6. – С. 44–50.

4. Оптико-электронные системы экологического мониторинга природной среды / В.И. Козинцев, В.М. Орлов, М.Л. Белов, В.А. Городничев, Б.В. Стрелков. – М.: Из-во МГТУ, 2002.– 528 с.

5. Тенденции и динамика состояния и загрязнения окружающей среды в Российской Федерации по данным многолетнего мониторинга за последние десять лет. – М.: Росгидромет, 2017.– 51 с.

6. Копелевич О.В. Использование видимого излучения при освоении и исследовании морей и океанов // Светотехника. –2017.– № 2. – С. 13–22.

7. Asiareport. Маршруты морских поставок нефти удлиняются. URL: http://asiareport.ru/index.php/ analitics/40547—marshruty-morskix-postavok-nefti-udlinyayutsya-.html (дата обращения: 15.10.2018).

8. Prestige oil spill. URL: https://www.reviewessays.com/Business/ Prestige-Oil-Spill/55203.html (дата обращения: 15.10.2018).

9. Deepwater Horizon Accident Investigation Report. URL: https://www.bp.com/content/dam/bp/pdf/ sustainability/issue-reports/ Deepwater_Horizon_Accident_Investigation_Report_Executive_summary.pdf (дата обращения: 15.10.2018).

10. Measures R.M. Laser remote sensing. Fundamentals and applications. – Malabar, Florida: Krieger Publishing Company, 1992.– 510 p.

11. Oil in the Sea. – Washington, D.C.: National Academy Press, 1985.– 588 p.

12. Леонтьев В.В. Радиоэлектронные средства экологического контроля для обнаружения и измерения характеристик разлива нефти на водной поверхности. – СПб: Изд-во ЛЭТИ, 2001.– 40 с.

13. Kozintsev V.I., Belov M.L., Gorodnichev V.A., Smirnova O.A., Fedotov Yu.V., Khroustaleva A.M. Lidar method of oil pollution detection on rough sea surface // Proc. SPIE.- 2005. - Vol. 5829. - P. 255-264.

14. *Fedotov Yu.V.* Impact of spectral bands number on classification accuracy of oil pollutions using laser induced fluorescence // Proc. SPIE.- 2005. - Vol. 10466. - P. 1–6.

15. *Fingas M., Brown C.* Review of oil spill remote sensing// Marine Pollution Bulletin.– 2014. – Vol. 83 (1). – P. 9–23.

16. Sergievskaya I, Ermakov S. Oil films detection on the sea surface using an optical remote sensing method // Proc. SPIE.- 2012. - Vol. 8532. - P. 85320P-1-85320P-6.

17. Sun S., Hu C. Sun glint requirement for the remote detection of surface oil films // Geophys. Res. Lett. – 2016. – Vol. 43. – P. 309–316.

18. *Panova P.V.* The airborne remote systems for offshore oil seepage detection. S E S2 0 0 5 Scientific Conference «SPACE, ECOLOGY, SAFETY» with International Participation, 10–13 June 2005, Varna, Bulgaria.p. 236–241. URL: http://www.cpnt.ru/userfiles/Airborn_systems for offshore seepage detection(1).pdf.

19. Krotikov V.D., Mordvinkin I.N., Pelyushenko A.S., Pelyushenko S.A., Rakut' I.V. Radiometric methods of remote sensing of oil spills on water surfase // Radiophysics and Quantum Electronics. – 2002. – Vol. 45, No. 3. – P. 220–229.

20. Dolenko T.A., Fadeev V.V., Gerdova I.V., Dolenko S.A., Reuter R. Fluorescence diagnostics of oil pollution in coastal marine waters by use of artificial neural network // Applied Optics.– 2002. – Vol. 41, No. 24. – P. 5155–5166. 21. Гуревич И.Я., Шифрин К.С. Отражение видимого и ИК излучения нефтяными плёнками на море / Оптические методы изучения океанов и внутренних водоёмов. – Новосибирск: Наука, 1979. – С. 166–176.

22. Гардашов Р.Г., Гуревич И.Я., Шифрин К.С. Отражение оптического излучения от взволнованной морской поверхности, покрытой нефтяной плёнкой / Оптика атмосферы и океана. – Баку: ЭЛМ, 1983. – С. 33–44.

23. *Cox C., Munk W.* Slopes of the sea surface deduced from photographs of sun glitter // Scripps. Inst. Oceanography. Bull.– 1956. – Vol. 6, No. 9. – P. 401–488.

24. *Tsai B.M., Gardner C.S.* Remote sensing of sea state using laser altimeter // Appl. Opt.– 1982. – Vol. 21, No. 21. – P. 3932–3940.

25. Белов М.Л., Городничев В.А., Козинцев В.И. Оценка лазерных локационных контрастов «нефтяная плёнка – чистая морская поверхность» на длине волны 10,6 мкм // Оптика атмосферы и океана.– 1999. –Т. 12, № 02. – С. 140–141.

26. *Mayor S.D., Spuler S.M., Morley B.M.* Scattering eye-safe depolarization lidar at 1.54 microns and potential usefulness in bioaerosol plume detection // Proc. SPIE. – 2005. – Vol. 5887. – P. 137–148.

27. ГОСТ 31581–2012 «Лазерная безопасность. Общие требования безопасности при разработке и эксплуатации лазерных изделий».

28. Ortenberg F. Ozone: Space Vision. – Haifa: ASRI Technion, 2002. –100 p.

29. Звягинцев А.М. Пространственно-временная изменчивость озона в тропосфере / Автореф. дис. ...д-ра физ.-мат. наук. – М., 2013. URL: https://phys.msu.ru/upload/iblock/e12/2013-00-00-zvyagintsev.pdf.

30. Альперович Л.И., Комарова А.И., Нарзиев Б.Н., Пушкарев В.Н. Оптические постоянные нефтей в области 0,25–25 мкм // ЖПС.– 1978.– № 4. – С. 719–723.

Белов Михаил Леонидович, доктор. техн. наук, профессор. Окончил в 1973 г. Московский Энергетический Институт. Главный научный сотрудник НИИ радиоэлектроники и лазерной техники МГТУ им. Н.Э. Баумана. Область научных интересов: оптические и оптико-электронные приборы и системы

Всякова Юлия Игоревна, Магистр МГТУ им. Н.Э. Баумана. Окончила в 2018 г. МГТУ им. Н.Э. Баумана. Область научных интересов: оптические и оптико-электронные приборы и системы мониторинга нефтяных загрязнений

Городничев Виктор Александрович,

доктор техн. наук, старший. научный сотрудник. Окончил в 1976 г. МГУ им. М.В. Ломоносова. Начальник отдела НИИ радиоэлектроники и лазерной техники МГТУ им. Н.Э. Баумана. Область научных интересов: оптические и оптико-электронные приборы и системы