Компьютерное моделирование и рекомендации по реставрации исторических светопрозрачных конструкций ГМИИ им. А.С. Пушкина

А.В. СПИРИДОНОВ, Н.П. УМНЯКОВА

Научно-исследовательский институт строительной физики РААСН, Москва E-mail: spiridonov@aprok.org

Аннотация

На базе предшествующих обследований авторами исторических окон главного здания ГМИИ им. А.С. Пушкина [1] с помощью сертифицированного программного комплекса проведён многовариантный анализ способов повышения эффективности существующих светопрозрачных конструкций. Разработаны рекомендации по реставрации исторических светопрозрачных конструкций, являющихся частью данного памятника культурного наследия, охраняемого государством.

Ключевые слова: реставрация, историческая светопрозрачная конструкция, рама, переплёт, импост, компьютерное моделирование, компьютерные расчёты, сопротивление теплопередаче, воздухопроницаемость, конденсат, рекомендации.

В результате обследований исторических светопрозрачных конструкций [1] стало очевидно, что они не соответствуют современным требованиям ни по сопротивлению теплопередаче, ни по воздухопроницаемости. При сохранении металлических рам (по закону об охране памятников культурного наследия и заданию Заказчика [2]) требовалось провести масштабные компьютерные расчёты по определению оптимальных вариантов реставрации окон.

Расчёт теплотехнических характеристик исторических и предлагаемых для реконструкции светопрозрачных конструкций, а также распределения температур на внутренних поверхностях остекления и профилей металлических рам проводился в соответствии с сертифицированным программным комплексом «WINDOW – ТЕСТ» (версия 2017) [3] при разных граничных условиях для каждого из сравни-

ваемых вариантов заполнения светопрозрачных конструкций.

Методика расчётов основана на моделировании стационарного процесса теплопередачи через строительные конструкции с использованием программного обеспечения для персональных компьютеров и теплотехнического расчёта фрагментов ограждающих конструкций зданий (включая светопрозрачные ограждения), их систем остекления и узлов примыкания оконных блоков к стеновым проёмам.

Данная методика позволяет осуществлять:

- сопоставительный анализ по приведённому сопротивлению теплопередаче вариантов светопрозрачных ограждающих конструкций разного назначения;
- выбор, на основе проведённых теплотехнических расчётов, оптимальных конструктивных решений;
- определение размеров зон одномерного и двумерного температурных полей светопрозрачных конструкций при подготовке к проведению испытаний в климатической камере;
- оценки температурного режима узлов примыкания оконных блоков к стеновым проёмам и выбора наиболее рационального конструктивного решения монтажных швов.

Для проведения расчётов были выбраны 6 следующих вариантов исполнения светопрозрачных конструкций:

- 1) существующая историческая светопрозрачная конструкция в соответствии с детальными обмерами в ходе натурных обследований; светопрозрачное заполнение прозрачные стёкла М1 толщиной 6 мм в наружной и внутренней металлических рамах;
- 2) то же, что вариант 1, но светопрозрачное заполнение — солнцезащитное стекло толщиной 6 мм в наружной металлической раме и стекло с твёрдым теплоотражающим покры-

тием (К-стекло) толщиной 6 мм во внутренней металлической раме;

- 3) то же, что вариант 1, но светопрозрачное заполнение — солнцезащитное стекло толщиной 6 мм в наружной металлической раме и однокамерный стеклопакет 4–10Ar-4И с внутренним теплоотражающим стеклом во внутренней металлической раме;
- 4) то же, что вариант 1, но светопрозрачное заполнение однокамерный стеклопакет с наружным солнцезащитным стеклом 4С3-10Ar-4 в наружной металлической раме и однокамерный стеклопакет 4—10Ar-4И с внутренним теплоотражающим стеклом во внутренней металлической раме;
- 5) то же, что вариант 1, но светопрозрачное заполнение однокамерный стеклопакет с наружным солнцезащитным стеклом и внутренним теплоотражающим стеклом 4СЗ-10Аг-4И в наружной металлической раме и теплоотражающее стекло с мягким низкоэмиссионным покрытием с повышенной стойкостью к истиранию толщиной 6 мм во внутренней металлической раме;
- 6) наружная рама остаётся исторической, а внутренняя металлическая рама заменена на аналогичную по размерам, но изготовленную из современного стеклопластика; светопрозрачные заполнения как в варианте 5.

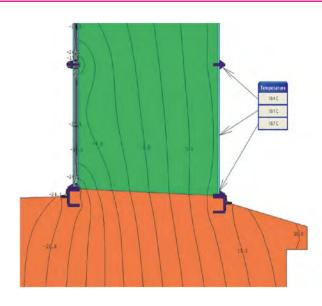
Внутренние микроклиматические условия для расчётов принимались в соответствии с проектом реконструкции главного здания ГМИИ им. А.С. Пушкина (далее – ГМИИ): температура (20 ± 1) °C и относительная влажность воздуха (50 ± 5) %.

В расчётах для всех вариантов использовалась, согласно СП [4, табл. 3.1], температура наружного воздуха — 28 °С. Однако для варианта 1 и лучшего из вариантов 2—5 (по результатам предварительных расчётов) проводились оценки теплотехнических параметров ограждающих конструкций и при других температурах наружного воздуха: — 30, — 20, — 15, — 10, 0, + 10 и + 21 °С для варианта 1 и — 20, — 15, — 10 и 0 °С для варианта 5.

При проведении комплекса расчётов оценивались приведённое сопротивление теплопередаче для всех вариантов светопрозрачных конструкций и возможность образования кон-

денсата на внутренних поверхностях остекления.

Результаты компьютерных расчётов сведены в таблицу.


Из таблицы видно, что светопрозрачные конструкции, изготовленные в соответствии с вариантами 3 и 4 (строки 10 и 11) удовлетворяют теплотехническим требованиям всех действующих нормативных документов и являются лучшими по температуре остекления. Однако при установке стеклопакетов во внутреннюю металлическую раму из-за изменения режима поступления тепла в межстекольное пространство резко повышается вероятность появления конденсата на угловых элементах внутренней металлической рамы.

На основании проведённых исследований разных вариантов реконструкции исторических светопрозрачных конструкций эксперты предложили для использования вариант 5 (соответствующее распределение температур — на рис. 1).

По результатам многочисленных натурных обследований исторических окон 1-го этажа основного здания ГМИИ были сделаны следующие основные выводы:

- исторические светопрозрачные конструкции требуют незамедлительной реконструкции;
- характеристики светопрозрачных конструкций (приведённое сопротивление теплопередаче, воздухопроницаемость) не соответствуют действующим нормативным документам, а при условии сохранения исторических светопрозрачных конструкций достаточно сложно добиться выполнения требований действующих нормативных документов к приведённому сопротивлению теплопередаче [5], но значительное повышение их теплотехнической эффективности возможно;
- температура на внутренних поверхностях существующих исторических светопрозрачных конструкций ниже температуры точки росы практически при всех отрицательных температурах наружного воздуха, что вызывает обильный конденсат;
- конденсат, образующийся на внутренних поверхностях светопрозрачных конструкций в холодные периоды года, отрицательно влияет на произведения искусства, экспонируемые в музее;
- в светопрозрачных конструкциях, выходящих на восточные, южные

Рис. 1. Распределение температур по внутренней поверхности нижней части светопрозрачной конструкции, изготовленной по варианту 5, при наружной температуре воздуха минус 28°C

и западные фасады главного здания ГМИИ, необходимо предусмотреть специальные солнцезащитные устройства и рассеивающие прямой солнечный свет шторы.

В связи с тем, что однозначным и неоспоримым требованием [2] является сохранение исторических светопрозрачных конструкций, установленных в 1912 г., основной целью разработанных нами рекомендаций стало восстановление и повышение эффективности металлических рам, исключение образования конденсата на внутренних поверхностях окон и защита произведений искусства от прямых солнечных лучей с использованием самых современных строительных технологий.

Разработанные рекомендации, основанные на результатах натурных обследований и компьютерного моделирования разных вариантов остекления в исторических светопрозрачных конструкциях, разбиты на 6 разделов, связанных с совершенствованием отдельных элементов конструкции.

1. Реставрация металлических рам исторических светопрозрачных конструкций

Металлические рамы поражены масштабной коррозией. В этой связи при их реставрации (может быть, больше подходит слово «восстановление») 1 необходимо:

- демонтировать как внутренние, так и наружные рамы;
- провести их очистку от следов многочисленных покрасок, проведённых за последние сто лет;
- разобрать на составные части металлические рамы (в том числе, главный вертикальный импост, состоящий из значительного числа элементов);
- провести тщательно очистку от ржавчины и обработку современными антикоррозионными составами абсолютно *всех* элементов конструкций;
- при возможной замене исторических элементов «новоделами» в связи с полной невозможностью их восстановления исключить применение современных материалов, которые могут вступить в электрохимическую реакцию с историческими;
- новую окраску элементов металлических рам следует провести *только* после проведения указанных выше мероприятий.

2. Модернизация узлов примыкания

В настоящий момент светопрозрачные конструкции закреплены напрямую к стене, что повышает вероятность возникновения на них конденсата из-за негативного влияния ограждающих конструкций.

Необходимо провести теплоизоляцию исторических оконных рам от

«СВЕТОТЕХНИКА», 2019, № 2

¹ При этом эксперты опасаются, что некоторые детали рам не подлежат восстановлению и потребуют замены (в частности, наверняка нуждается во многих рамах в замене стальной уголок под нижней внутренней декоративной накладкой, наиболее подвергавшийся воздействию конденсата, а также нижние внутренние части главного вертикального импоста).

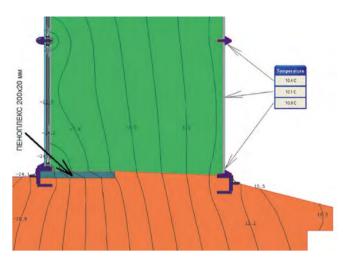


Рис. 2. Утепление периметра наружной металлической рамы

ограждающих конструкций с использованием современных материалов.

С этой целью – после снятия для реставрации металлических рам (см. первую из наших рекомендаций) – следует провести штробление стен в зонах установки наружных металлических рам, установить в полученные пазы современный эффективный теплоизоляционный материал, например, пеноплэкс, и только потом устанавливать исторические светопрозрачные конструкции на место.

Рекомендуемое сечение теплоизоляционного материала — 200 (ширина) \times 20 (глубина) мм. На рис. 2 приведён один из вариантов рекомендуемого утепления периметра светового проёма при реставрации исторических светопрозрачных конструкций.

3. Совершенствование герметизации исторических светопрозрачных конструкций

При монтаже восстановленных исторических светопрозрачных конструкций в световые проёмы необходимо обеспечить максимальную герметизацию внутренней металлической рамы, чтобы, по возможности, исключить поступление внутреннего влажного воздуха в межстекольное пространство с целью минимизации вероятности образования конденсата на внутренней поверхности наружной металлической рамы.

С этой же целью необходимо восстановить и отрегулировать историческую фурнитуру форточек (как в наружной, так и, особенно, во внутренней металлических рамах) и открывать их только в случаях крайней необходимости. Притворы форточек следует оборудовать современным са-

моклеющимся губчатым материалом (в настоящее время имеется море таких герметиков).

При проведении герметизации наружной металлической рамы следует предусмотреть продухи для обеспечения естественной вентиляции межстекольного пространства и доступа в холодный период года относительно сухого наружного воздуха с целью минимизации образования конденсата на внутренней поверхности наружной металлической рамы. Общая длина отверстий для обеспечения естественной вентиляции межстекольного пространства не должна превышать 1–3 % от общего периметра стыка окна с ограждающей конструкцией.

4. Совершенствование остекления исторических светопрозрачных конструкций

В ходе проведённых в рамках выполнения настоящей работы натурных [1] и компьютерных исследований в результате оценки 6 вариантов реконструкции исторических светопрозрачных конструкций был выбран вариант 6 (см. выше).

Именно этот вариант обеспечивает наилучшие температуры внутренних поверхностей остекления, исключающие возникновение конденсата при нормируемой в Москве температуре наружного воздуха: — 28 °C.

Приведённое сопротивление теплопередаче такой светопрозрачной конструкции будет составлять 0,58 м^{2.}°С/Вт, что соответствует требованиям СП [5] (0,54 м^{2.}°С/Вт) для климатических условий Москвы. Однако при введении в действие Изменения № 1 к вышеуказанному СП (что предполагается в ближайшее время)

нормируемое приведённое сопротивление теплопередаче окон будет составлять не менее $0.70 \,\mathrm{m}^{2.9}\mathrm{C/BT}$.

В стеклопакете, который будет установлен в наружной металлической раме, рекомендуется использовать «тёплую» дистанционную рамку «SWIGGLE STRIP», которая минимально изменит внешний вид исторических светопрозрачных конструкций. Верхний цвет герметика можно выбрать чёрным (как у самой рамы), а толщину рамки — минимальной из всех других доступных вариантов.

Между стеклопакетом и металлической рамой следует установить стандартные пластиковые подкладки минимально возможной толщины, а закрепить стеклопакет следует одним из герметиков для структурного остекления по его периметру. Так же закреплять следует и стекло во внутренней металлической раме.

Полочка металлической рамы, куда будет установлен стеклопакет, имеет ширину 21 мм, поэтому невозможно использовать более эффективные пакеты, с дистанционными рамками шириной 12–16 мм. Однако и предлагаемый тип стеклопакета (4С3-10Ar-4И) толщиной 18 мм обеспечивает необходимые температуры на внутренней поверхности стекла.

В связи с тем, что в верхних четвертях исторической светопрозрачной конструкции на стекле установлены металлические накладки, следует предусмотреть установку между накладками и стеклом/стеклопакетом пористых лент на основе двустороннего скотча (на рынке имеется большой выбор таких материалов).

В случае необходимости для повышения безопасности возможно нанесение полимерной плёнки на стекло, расположенное во внутренней металлической раме так же, как это есть на данный момент.

5. Исключение образования конденсата на металлических переплётах

Одни из наиболее критичных с точки зрения образования конденсата элементов исторических светопрозрачных конструкций — металлические переплёты, особенно главный вертикальный массивный металлический импост.

Обобщённые результаты компьютерных расчётов вариантов реконструкции исторических светопрозрачных конструкций

 $(R^{\rm np}{}_{\rm o}-$ приведённое сопротивление теплопередаче, $t_{\rm H}-$ температура наружного воздуха, $t_{\rm oct}-$ температура по центру внутреннего стекла, $t_{\rm pam}-$ температура внутренней поверхности металлической рамы)

Вариант остекления	^{Rпр} ₀, м ^{2.} °С/Вт	t _⊪ , °C	t₀cr, °C	Возможность образования конденсата	t _{paм} , °C	Возможность образования конденсата
1		- 30	-1,9	да	-1,1	да
	0,34	- 28	-1,0		- 0,4	
		-20	3,2		3,5	
		- 15	4,8		5,5	
		- 10	6,8		7,7	да*
		0	11,2	да**	11,5	да**
		10	15,6	нет	15,8	нет
		21	20,4		20,4	
2	0,38	- 28	- 0,8	да	- 0,4	
3	0,56	- 28	13,0	нет	- 8,0	да
4	0,67	- 28	14,6		- 2,7	
5	0,58	- 28	11,4	да**	10,4	- да**
		- 20	11,5		11,1	
		– 15	12,6	нет	12,0	нет
		- 10	13,6		13,1	
		0	16,1		15,6	
6	0,66	- 28	5,8	да	12,8	

Примечания:

Практически при всех отрицательных температурах наружного воздуха на его внутренней поверхности также регистрировались минусовые температуры, что, несомненно, будет способствовать появлению на них конденсата, а в особо экстремальных ситуациях — инея.

Для улучшения температурного режима этого элемента конструкции предлагается установить на его невидимую часть в межстекольном пространстве специальную накладку, выполненную, например, из экструдированного вспененного ПВХ, окрашенную в чёрный цвет (чтобы она не выделялась на фоне металлической рамы) которая значительно повысит температуру на внутренней поверхности главного вертикального импо-

ста исторической светопрозрачной конструкции.

Согласно варианту 5, рекомендуемому к использованию при указанной реконструкции исторических светопрозрачных конструкций, необходимо с помощью аналогичных накладок утеплить главный вертикальный импост только наружной металлической рамы изнутри межстекольного пространства (рис. 3).

При большинстве отрицательных уличных температур возможно появление конденсата и на внутренних поверхностях основных переплётов внутренних металлических рам.

Нами предлагается скрытая от взгляда из помещения прокладка в межстекольном пространстве по периметру этих переплётов специальных

греющих шнуров. Рекомендуется использование регулируемых по температурным режимам шнуров из композитных материалов с максимальными температурами до 38 °C (на рынке есть много вариантов таких изделий).

Следует обеспечить свободную конвекцию тёплого воздуха от отопительных приборов, которые сегодня закрыты декоративными решётками и подоконниками. Для этого необходимо сделать перфорацию подоконников (установить в них специальные вентиляционные решётки, вариантов которых на рынке множество).

Одно из возможных решений проблемы повышения температуры внутренних поверхностей остекления и металлических рам — установка в межстекольном пространстве те-

«СВЕТОТЕХНИКА», 2019, № 2

^{* -} только в одной ситуации (температура воздуха: 19 °C, относительная влажность воздуха: 45 % – температура точки росы: -6,81 °C) исключено появление конденсата;

^{** –} только в одной ситуации (температура воздуха: 21 °C, относительная влажность воздуха: 55 % – температура точки росы: –11,62 °C) возможно появление конденсата.

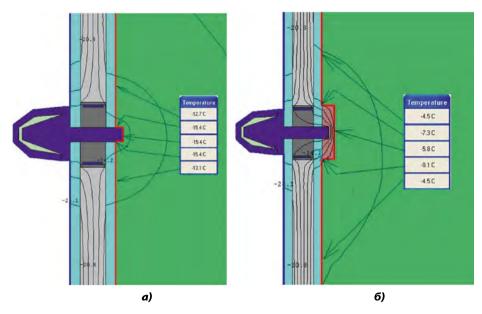


Рис. 3. Температурные поля в зоне главного вертикального импоста наружной металлической рамы без установленного нащельника (a) и с ним (b), рассчитанные по варианту 5

пловых конвекторов, но это представляется не самым лучшим решением вопроса исключения образования конденсата на остеклении.

6. Повышение визуального комфорта

Значительное число светопрозрачных конструкций главного здания ГМИИ ориентировано на солнечные румбы горизонта.

Помимо того, что чрезмерное поступление прямой и рассеянной солнечной радиации в помещения оказывает отрицательное действие на эффективность систем кондиционирования воздуха, прямой солнечный свет может негативно влиять на произведения искусства и мешать их восприятию.

В этой связи эксперты предлагают устанавливать в межстекольном пространстве специальные солнцезащитные шторы с электроприводом. Такие солнцезащитные устройства есть в производственных программах многих фирм.

Из-за того, что между внутренней и наружной металлическими рамами установлены металлические скобы, которые, помимо функции лестницы, играют роль связи между рамами, практически невозможно устанавливать целиковые солнцезащитные шторы — их будет необходимо делить на две части.

Авторы очень рассчитывают на то, что:

- проведённые исследования и разработанные рекомендации по реконструкции очень непростых исторических светопрозрачных конструкций одного из значительных федеральных памятников культуры, позволят обратить внимание специалистов на необходимость учёта особенностей окон старых конструкций при реставрации старинных зданий, а также покажут основные направления этой работы;
- после проведения комплексной реконструкции фасады главного здания ГМИИ войдут в очередной сборник достижений Международного совета по сохранению памятников (англ. International Council on Monuments and Sites) [6], в которых отводится внимание и светопрозрачным конструкциям.

Авторы готовы участвовать в аналогичных работах и в других исторических зданиях — они достойны того, чтобы все их элементы, с одной стороны, соответствовали замыслу архитекторов, а с другой — отвечали современным требованиям по энергосбережению. Сегодня есть очень много возможностей с помощью современных оконных технологий дать новую жизнь старинным светопрозрачным конструкциям.

Огромную благодарность авторы приносят сотрудникам ООО «ГК «РОБИТЕКС» Н. Румянцеву и И. Истоминой за помощь в расчётах и подготовке рекомендаций по реконструкции исторических светопрозрачных конструкций ГМИИ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Спиридонов А.В., Умнякова Н.П. Обследование состояния (общее и инструментальное) исторических светопрозрачных конструкций ГМИИ им. А.С. Пушкина // Светотехника 2019. № 1. С. 39–43.
- 2. «Комплексная реконструкция, реставрация и приспособление под современные музейные технологии главного здания Государственного музея изобразительных искусств имени А.С. Пушкина (г. Москва, ул. Волхонка, д. 12)» [Документация подготовлена Федеральным государственным унитарным предприятием «Центральные научно-реставрационные проектные мастерские»].
- 3. Руководство пользователя программным комплексом «WINDOW-TECT» в составе программ THERM, WINDOW. М.: АПРОК-ТЕСТ, 2006 г., 140 с.
- 4. СП 131.13330.2012. «Строительная климатология. Актуализированная редакция СНиП 23–01–99».
- 5. СП 50.13330.2012 «Тепловая защита зданий», Актуализированная редакция СНиП 23–02–2003.
- 6. International Charters for Conservation and Restoration. Chapter1. Monuments and Sites. ICOMOS, 2004.– 184 p. URL: http://openarchive.icomos.org/431/1/Monuments_and_Sites_1_Charters.pdf (дата обращения 20.09.2018).

Спиридонов
Александр Владимирович кандидат техн. наук.
Окончил в 1975 г.
МЭИ по специальности «Светотехника
и источники света». Главный научный сотрудник

НИИСФ РААСН. Президент Ассоциации производителей энергоэффективных окон (АПРОК). Лауреат Премии Правительства РФ в области науки и техники

Умнякова Нина Павловна, кандидат техн. наук, доцент. Окончила МИСИ. Зам. директора НИИСФ РААСН по научной работе. Область научных интересов: тепловая защита зданий,

энергосбережение, оценка теплозащитных качеств наружных ограждений при наличии отражательной теплоизоляции

76 «СВЕТОТЕХНИКА», 2019, № 2