Оптимизация поляризационного нефелометра

В.Г. ОШЛАКОВ, А.П. ЩЕРБАКОВ

Институт оптики атмосферы им. В.Е. Зуева СО РАН, Томск E-mail: oshlakov@iao.ru

Аннотация

Приведён анализ влияния параметров поляризационного нефелометра на точность измерения матрицы рассеяния неизотропной среды. Рассмотрены ошибки аппроксимации реальных рассеивающего объёма и пучка излучения элементарным рассеивающим объёмом и элементарным пучком излучения. Предложена формула расчёта базы нефелометра. Показано, что требования к источнику излучения¹ поляризационного нефелометра – монохроматичность и высокие интенсивность и направленность излучения в широком спектральном диапазоне - могут удовлетворяться набором светодиодов высокой яркости с излучающим (светящим) телом малого размера. Описан 5-волновой монохроматический источник излучения (с потоком излучения 0,15-0,6 Вт), необходимый для поляризационного нефелометра. Показана конструкция малогабаритных поляризационных блоков управления фазовыми элементами.

Представлена электронная схема блока управления излучателем¹, построенного на основе управляющего двигателем 8-разрядного микроконтроллера семейства AVR-Atmega, с обратной связью, реализованной посредством инкрементального датчика угловых перемещений и программного ПИД-регулятора². Точность и плавность движения излучателя обеспечиваются стандартной математикой числового программного управления сервоприводами и применением прецизионных редукторов. Система предусматривает как автономную настройку реперных положений излучателя, так и настройку при помощи команд от персонального компьютера. При разработке программ для компьютера и для микроконтроллера использовалось свободное программное обеспечение, позволяющее переносить программы на операционные системы Windows-7(10), Linux и embedded Linux. Связь между системой управления положением излучателя и персональным компьютером реализована с помощью стандартного помехоустойчивого интерфейса USB-RS485.

Ключевые слова: поляризация, нефелометр, неизотропный рассеиватель, матрица рассеяния, элементарный объём, элементарный световой пучок, ошибка аппроксимации, светодиод, инкодер, микропроцессор, прецизионное управление положением, двигатель, силовой мост, широтно-импульсная модуляция, ПИДрегулятор.

Введение

Матрица рассеяния D_{mn} , m, $n = \overline{1, 4}$, связывает векторы Стокса падающего (S_s) и рассеянного (S) излучений малым объёмом dv под углом φ относительно падающего излучения (рис. 1). Матрица рассеяния оптического излучения используется в задачах распространения оптических волн, лазерного зондирования, поляризационной фильтрации и др. На важность и сложность создания прибора, автоматически измеряющего матрицу D_{mn} , m, n = 1, 4, указано в [1]. Модуляционный метод измерения вектора Стокса [2, 3] не применим в лазерном зондировании. Теоретические исследования [4, 5] показали, что в случае изотропной среды можно априори указывать равные и нулевые элементы матрицы D. В измерениях её [2, 3] используются эти исследования, поэтому методика [2, 3] применима лишь к изотропным средам.

Методика измерения матрицы D любой среды, предложенная в [6, 7], применима также в лазерном зондировании. Точность измерений при этом зависит от монохроматичности излучения и точности установки быстрой оси (БО) фазового элемента (ФЭ) в пространстве.

Многоволновые монохроматические источники излучения (ИИ) высокой интенсивности, необходимые при поляризационных измерениях, можно создавать на светодиодах (СД) высокой яркости. Точностные характеристики поляризационного измерителя (поляризационного нефелометра) матрицы *D* зависят от его линейных размеров и параметров (линейных и угловых) пучка излучения (ПИ) ИИ. Рассеивающий объём поляризационного нефелометра и ПИ должны быть элементарными, однако определения их известны качественные, и потому в статье рассмотрена аппроксимация реальных рассеивающего объёма и ПИ.

Оптимизация размеров поляризационного нефелометра

Запишем вектор Стокса S в виде

$$\mathbf{S} = \left(I \, Q \, U \, V\right)^{\mathrm{I}},\tag{1}$$

где Т – знак транспонирования. Тогда вектор Стокса, $d\mathbf{S}(i) = (dI(i) dQ(i) dU(i) dV(i))^{T}$, излучения, рассеянного малым объёмом dv (рис. 1), находящимся в некоторой точке *i* рассеивающей среды, в точке наблюдения, удалённой от него на расстоянии r(i), может быть выражен как [1]

$$d\mathbf{S}(i) = \frac{1}{r^{2}(i)} D(\varphi(i), \mathbf{I}_{s}(i), \mathbf{l}(i)) \mathbf{S}_{s}(i) \, dv, \qquad (2)$$

где $\mathbf{S}_{s}(i) = (I_{s}(i) Q_{s}(i) U_{s}(i) V_{s}(i))^{1}$ – вектор Стокса облучающего малый объём dv ПИ с определяемой направляющим вектором $\mathbf{I}_{s}(i)$ осью распространяющегося в пределах малого телесного угла $\Delta \Omega_{s}(i)$; $d\mathbf{S}(i)$ – вектор Стокса ПИ рассеянного излучения с определяемой направляющим век-

¹ Внимание: по светотехнической терминологии, «источник излучения» (ИИ) в статье означает «облучатель» или «облучательный прибор», а «излучатель» – «источник излучения». – Прим. ред.

² Пропорционально-интегрально-дифференцирующий регулятор.

тором **I**(*i*) осью, распространяющегося в пределах малого телесного угла $\Delta \Omega(i)$; $\varphi(i)$ – угол между векторами **I**_s(*i*) и **I**(*i*). Будем придерживаться обозначений параметров вектора Стокса **S**, как это принято в [6, 7]: *I*, *Q*, *U*, *V*.

В случае неизотропной среды элементы матрицы $D(\varphi(i), \mathbf{I}_{s}(i), \mathbf{I}(i))$ есть функции положения плоскости рассеяния, определяемой векторами $\mathbf{I}_{s}(i)$ и $\mathbf{I}(i)$, и угла $\varphi(i)$. Для измерения матрицы $D(\varphi, \mathbf{I}_{s}, \mathbf{I})$ в открытом интервале $\varphi = (0^{\circ}, 180^{\circ})$ применяется поляризационный нефелометр, построенный по схеме гониометра [2, 3] (рис. 1). ИИ создаёт ПИ диаметром d_{s} (диаметр – здесь наибольший размер поперечного сечения) и расходимостью $\Delta\Omega_{s}$. Распространяясь, излучение проходит последовательно поляризационный блок (ПБ) ИИ, состоящий из поляризатора и ФЭ. Излучение должно быть в максимальной степени монохромати-

Таблица 1

Параметры нефелометров, применявшихся при исследовании атмосферы

Парамотр	Источник информации			
параметр	[2]	[8]	[9]	
База А, м	8	0,58	0,58	
<i>d</i> _s , м	0,2	0,03	0,03	
<i>d</i> _г , м	0,1	0,03	0,03	
Расходимость пучка излучения источника излучения	40'	40'	40'	
Угол поля зрения фотоприёмника	2–4°	3°	3°	

ческим, чтобы разность хода ортогональных компонент излучения на выходе Φ Э была величиной постоянной. Фотоприёмник с диаметром входного зрачка d_r и углом поля зрения $\Delta \Omega_r$, принимает излучение, проходящее последовательно Φ Э и поляризатор ПБ. Оси симметрии ПИ ИИ и поля зрения фотоприёмника задаются направляющими векторами I_s и I соответственно. Оси симметрии пересекаются в точке *I*, фотоприёмник должен вращаться вокруг оси, проходящей через эту точку и перпендикулярной плоскости, определяемой векторами I_s и I. Угол φ между этими векторами определяет угол рассеяния матрицы $D(\varphi, I_s,$ I), а векторы – плоскость рассеяния. В [8, 9] один фотоприёмник, вращающийся вокруг оси, заменялся пятью фотоприёмниками, установленными под разными углами φ .

Сумма расстояний между точками 1, 2 (A_r) и 1, 3 (A_s) называется базой (A) нефелометра.

Параметры некоторых нефелометров, применявшихся в экспериментах в изотропной атмосфере, приведены в табл. 1, из которой видно, что нефелометры весьма различны по параметрам A, d_r и d_s .

Границы применимости этих нефелометров относительно параметров атмосферы недостаточно обсуждались. Недостаточно обсуждался и вопрос оптимизации параметров нефелометра с точки зрения улучшения его точностных характеристик.

В описании нефелометров используются понятия элементарный объём $V_{\rm s\ el}(\varphi)$ и элементарный ПИ, как идеализации реальных объёма $V_{\rm s}(\varphi)$ и ПИ. Однако точность аппроксимации последних их объёмом $V_{\rm s\ el}$ и элементарным ПИ не обсуждалась. Рассеивающий объём $V_s(\varphi)$ (рис. 1) ограничен боковыми поверхностями ПИ ИИ и угла поля зрения фотоприёмника и характеризуется диаметрами сечений этих ПИ (a_s) и поля зрения (a_t) .

Для малого объёма dv в точке 1 уравнение (2) имеет вид

$$d\mathbf{S} = \frac{1}{A_r^2} D(\varphi, \mathbf{I}_s, \mathbf{I}) \mathbf{S}_s \, dv.$$
(3)

Введём правые системы координат *XYZ* и *X'Y'Z'*, причём оси *XZ* и *X'Z'* лежат в плоскости рассеяния, определяемой векторами I_s и I, которые одновременно – направляющие векторы осей *Z'* и *Z* соответственно. Будем определять векторы S_s и dS относительно, соответственно, осей *X'* и *X*.

Задача поляризационного нефелометра – определение элементов матрицы $D(\varphi, \mathbf{I}_{s}, \mathbf{I})$ в абсолютных единицах, удовлетворяющих уравнению (3). Объём dv должен быть достаточно большим, чтобы считать, что в нём представлен полный набор всех частиц, характерных для данной среды. В случае хорошо перемешанного «чистого» воздуха, содержащего вблизи земной поверхности аэрозольные частицы размером в несколько микрометров, объём dv можно принять равным нескольким кубическим сантиметрам. То же самое справедливо и для умеренно плотных, но устойчивых слоистообразных облаков. Однако в случае плотных кучевых облаков достаточно объёма и в 1 см³, чтобы надёжно определять функцию распределения частиц по размерам и их концентрацию [10]. Малый объём dv – это объём рассеивающей среды, содержащий генеральную совокупность частиц.

Пусть в объёме $V_s(\varphi)$ содержится N малых объёмов dv и пусть в каждом *i*-ом объёме dv есть некая точка *i*, к которой привязаны свои правые системы координат X(i)Y(i)Z(i) и X'(i)Y'(i)Z'(i). Оси Y(i) и Y'(i) перпендикулярны плоскости рассеяния в точке *i i*-го объёма dv, которая определяется векторами $\mathbf{I}_s(i)$ и $\mathbf{I}(i)$, совпадающими с осями ПИ облучающего и рассеянного излучений *i*-го объёма dv соответственно, с векторами $\mathbf{I}(i)$ и $\mathbf{I}_s(i)$. Векторы $\mathbf{S}_s(i)$ и $d\mathbf{S}(i)$, соответственно, падающего и рассеянного излучений *i*-го объёма dv определяются, соответственно, относительно осей X'(i) и X(i).

Расстояние A_r должно всегда превышать не менее чем в 5 раз диаметр любого сечения объёма $V_s(\varphi)$ плоскостью, перпендикулярной оси поля зрения фотоприёмника [11]. Кроме того, ПБ фотоприёмника не должен попадать в объём $V_s(\varphi)$. Если потребовать, чтобы расстояние между точками *1*, *6* объёма $V_s(\varphi)$ было не больше величины A_r при угле

$$\varphi = \begin{cases} \varphi_{\min}, & \text{при} \quad \varphi_{\min} < 10^{\circ}, \\ 10^{\circ}, & \text{при} \quad \varphi_{\min} > 10^{\circ}, \end{cases}$$

где $[\varphi_{\min}, \varphi_{\max}]$ – интервал углов измерения матрицы D, то мы удовлетворим этому условию. Следовательно, должно выполняться условие

$$A_{\rm r} > \frac{dr}{2} \operatorname{ctg} \frac{\varphi}{2}, \qquad (3, a)$$

где также $\varphi = \begin{cases} \varphi_{\min}, & \text{при} \quad \varphi_{\min} < 10^{\circ}, \\ 10^{\circ}, & \text{при} \quad \varphi_{\min} > 10^{\circ}. \end{cases}$

Рис. 2. Ослабление пучка излучения единичной мощности реальным объёмом $V_{\rm s}(\varphi)$ (1) и элементарным объёмом $V_{\rm s}$ el(φ) (2) и относительная ошибка аппроксимации элементарного объёма реальным объёмом $\Delta_{\rm org}$ (%)

Предполагается, что при $V_{s}(\varphi) \leq V_{sel}(\varphi)$ на расстоянии A_{r} , удовлетворяющем (3, *a*), с учётом (3) можно выразить **S** с малой погрешностью:

$$\mathbf{S} \cong \frac{1}{A_{\mathrm{r}}^2} \int_{V_{\mathrm{s}}(\varphi)} D(\varphi, \mathbf{l}_{\mathrm{s}}, \mathbf{l}) \mathbf{S}_{\mathrm{s}}(i) dv \cong \frac{1}{A_{\mathrm{r}}^2} D(\varphi, \mathbf{l}_{\mathrm{s}}, \mathbf{l}) \mathbf{S}_{\mathrm{s}} V_{\mathrm{s}}(\varphi), \quad (4)$$

где $D(\varphi, \mathbf{I}_{s}, \mathbf{I}), \mathbf{S}_{s}(i)$ и \mathbf{S}_{s} – матрица рассеяния объёма dv, вектор Стокса облучающего его ПИ и вектор Стокса ПИ, облучающего объём $V_{s}(\varphi)$ соответственно.

Выражение (4) справедливо, когда интенсивность падающего на объём $V_{\rm s}(\varphi)$ излучения остаётся почти неизменной в его пределах. В объёме $V_{\rm s}$ el(φ) количества поглощённого и рассеянного излучений пропорциональны его размеру [12]. Распространение излучения в рассеивающей среде сопровождается появлением многократного рассеяния. В излучении, падающем на объём $V_{\rm s}(\varphi)$, доля многократно рассеянного излучения должна быть пренебрежимо мала по сравнению с прямым излучением. Изотропная среда может характеризоваться показателем ослабления $k_{\lambda} = a_{\lambda} + \sigma_{\lambda}$, где a_{λ} – показатель поглощения, σ_{λ} – показатель рассеяния. В этом случае оптические толщины $\tau(A_{\rm s}) = k_{\lambda}A_{\rm s}$ и $\tau(a_{\rm r}) = k_{\lambda}a_{\rm r}$ не должны превышать 5–6 [1].

Рассмотрим аппроксимацию объёма $V_{\rm s}(\varphi)$ изотропной среды объёмом $V_{\rm s el}(\varphi)$.

Поток излучения Φ_s единичной мощности после пройденного расстояния l уменьшается на величину Φ_{ocn} :

$$\Phi_{\text{ocn}} = 1 - e^{-\tau(l)} = \Phi(l) - \frac{\tau(l)^2}{2!} + \frac{\tau(l)^3}{3!} - \dots$$
$$\dots - \frac{(-\tau(l))^n}{n!} = \tau(l) - \tilde{\tau}(l), \tag{5}$$

Рис. 3. Структурная схема источника излучения; 1 – диафрагма Ø 0,5; 2 – деполяризатор; 3 – объектив ГЕЛИОС-44–2; T1 – RLU120; M1 – ATmega16; M2 – MAX 485; M3 – LMD18200

где
$$\tau(l) = k_{\lambda}l, \ \tilde{\tau}(l) = \frac{\tau(l)^2}{2!} - \frac{\tau(l)^3}{3!} + \dots + \frac{(-\tau(l))^n}{n!}.$$

Из (5) следует: если оптическая толщина $\tau(a_r)$ (рис. 1) объёма $V_s(\varphi)$ удовлетворяет условию

$$\tau(a_{\rm r}) \gg \tilde{\tau}(a_{\rm r}),\tag{6}$$

то его можно рассматривать с некоторой погрешностью как объём $V_{\rm s \ el}(\varphi)$. На рис. 2 показано ослабление потока излучения $\Phi_{\rm s}$ единичной мощности объёмом $V_{\rm s}(\varphi)$ (линия *I*) и при аппроксимации его объёмом $V_{\rm s \ el}(\varphi)$ (линия *2*). Относительную ошибку такой аппроксимации $\Delta_{\rm orth}$ определим как

$$\Delta_{\rm oTH} = \frac{\tilde{\Phi}_{\rm oCH} - \Phi_{\rm oCH}}{\Phi_{\rm oCH}},\tag{7}$$

где $\tilde{\Phi}_{_{\text{осл}}} = \tau(l)$ – ослабление потока излучения единичной мощности объёмом $V_{\text{s el}}(\varphi)$.

Объём $V_{\rm s}(\varphi)$, оптическая толщина которого $\tau(a_{\rm r}) = 0.05$, может считаться объёмом $V_{\rm s} \,_{\rm el}(\varphi)$ с ошибкой $\Delta_{\rm orn} = 2.5$ %.

Этот критерий позволяет определить величину a_r : $a_r = 0,05/k_{\lambda}$. Объём, толщина a_r которого для ПИ удовлетворят условию

$$a_{\rm r} < 0.05/k_{\lambda} \,, \tag{8}$$

может считаться объёмом $V_{\rm s~el}$.

Практически в любом объёме $V_s(\varphi)$ достаточно гомогенной среды число рассеивающих и поглощающих центров велико, поэтому условие статистической презентативности элементарного объёма, оптическая толщина которого $\tau(a_r) = 0.05$, выполняется всегда с большой точностью, и потому толщина a_r объёма dv может быть значительно меньше $0.05/k_{\lambda}$.

Используя формулу Кошмидера, можно (8) переписать в виде

Рис. 4. Источник излучения

$$a_{\rm r} = 0,013 L_{\rm MJB},$$
 (9)

где $L_{\text{мдв}}$ – метеорологическая дальность ви<u>ди</u>мости.

 $\Pi P E A Л O Ж E H U E$. Матрица \tilde{D}_{mn} , m, n = 1, 4, измеренная поляризационным нефелометром, является матрицей D_{mn} , m, n = 1, 4 среды, если в объёме $V_{\rm s}(\varphi)$ плоскости рассяния всех малых объёмов dv, определяемых векторами $\mathbf{I}_{\rm s}(i)$ и $\mathbf{I}(i)$, параллельны, а углы $\varphi(i)$ между ними равны.

Это предложение удовлетворятся при следующих условиях:

1. Рассеивающий объём $V_{\rm s}(\varphi)$ стянут до объёма dv в точке 1.

2. ПИ ИИ на длине *a*_r можно аппроксимировать с малой погрешностью элементарным ПИ, а угол поля зрения фотоприёмника в плоскости рассеяния мал.

ПИ с малым относительным изменением энергетической яркости (ЭЯ) на расстоянии a_r можно с малой погрешностью заменить элементарным ПИ. Пусть ПИ ИИ распространяется в телесном угле $\Delta\Omega_s$, тогда ЭЯ L_s ПИ, облучающего объём $V_s(\varphi)$, в точке 4 выражается как

$$L_{\rm s} = \frac{E^{\perp}}{\Delta \Omega_{\rm s}} = \frac{4I}{\pi a_{\rm s}^2},\tag{10}$$

где E^{\perp} – энергетическая облучённость в поперечном сечении ПИ, I – сила излучения.

Относительное изменение ЭЯ $\delta L_{\rm s}$ на расстоянии $a_{\rm r}$ определяется как

$$\delta L_{\rm s} = \frac{L_{\rm s} - L_{\rm s}(a_{\rm r})}{L_{\rm s}(a_{\rm r})} = \frac{L_{\rm s}}{L_{\rm s}(a_{\rm r})} - 1, \tag{11}$$

где $L_s(a_r)$ – ЭЯ ПИ на расстоянии a_r от точки 4.

Используя (10), уменьшение ЭЯ $\delta = L_s / L_s(a_r)$ определится в виде

$$\delta = \frac{L_{\rm s}}{L_{\rm s}(a_{\rm r})} = \frac{2\left(a_{\rm s}/2 + a_{\rm r}\,\mathrm{tg}\alpha_{\rm s}\right)^2}{a_{\rm s}^2} =$$
$$= 1 + \frac{2a_{\rm r}\,\mathrm{tg}\alpha_{\rm s}}{a_{\rm s}} \left(1 + \frac{2a_{\rm r}}{a_{\rm s}}\,\mathrm{tg}\alpha_{\rm s}\right),\tag{12}$$

где 2*a*_s – угол расходимости ПИ. С учётом (12)

Рис. 5. Схема излучателя: 1 – СД; 2 – теплоотводящий элемент; 3 – цилиндр; 4 – изолятор; 5 – стержень; 6 – радиатор

$$\delta L_{\rm s} = \frac{2a_{\rm r}}{a_{\rm s}} {\rm tg}\alpha_{\rm s} \left(1 + \frac{2a_{\rm r}}{a_{\rm s}} {\rm tg}\alpha_{\rm s} \right). \tag{13}$$

Величина δL_s характеризует относительное изменение ЭЯ ПИ L_s на расстоянии a_r и определяется параметром $\delta \tilde{L}_s = \frac{a_r}{a_s} tg\alpha_s$. Параллельный ПИ – идеальный представи-

тель элементарного ПИ, и у него параметр $\delta L_s = 0$. На малом расстоянии a_r можно пренебречь незначительной величиной δL_s ПИ и считать его на этом расстоянии элементарным ПИ. Можно считать, что погрешность аппроксимации ПИ поляризационного нефелометра длиной a_r элементарным ПИ определяется значением указанного параметра δL_s .

Источник излучения

Идеальный ИИ для поляризационных измерений должен быть монохроматическим, высокоинтенсивным, иметь несколько пиков в широком спектральном диапазоне и, согласно (13), обладать высокой направленностью излучения. В настоящее время имеется большая номенклатура СД высокой яркости, применяемых в разных областях науки и техники [13, 14]. Требования к идеальному ИИ для поляризационных измерений можно удовлетворять набором таких СД с излучающим (светящим) телом малых размеров. На рис. 3 показана структурная схема 5-волнового квазимонохроматического ИИ высокой интенсивности и направленности, а на рис. 4 дан его внешний вид. В качестве генераторов излучения используются СД высокой яркости, основные параметры которых приведены в табл. 2

СД с излучающим телом размером $d_{\rm тя} = 1$ мм устанавливается в ИИ на расстоянии 1 мм перед диафрагмой диаметром 0,5 мм. Объектив ГЕЛИОС-44–2 позволяет получать ПИ диаметром $d_{\rm s} = 25$ мм с расходимостью 0,3°.

Минимальный объём dv чистого воздуха равен нескольким кубическим сантиметрам. Можно принять $d_r = 25$ мм. Тогда минимальный объём Vs (90°), в нашем случае, можно получить большим 10 см³. База нефелометра A = 1,2 м и величина $A_r = 0,6$ м могут обеспечивать измерение матрицы D при $\varphi_{\min} = 1,8^\circ$. Параметр ПИ $\delta \tilde{L}_s$, ха-

Таблица 2

Тип	Цвет излучения	λ _{max} , нм	Ф, Вт	U, B	I _{max} , мА	<i>I</i> _{средн} , мА	<i>δλ</i> , нм/°С	<i>d</i> _{ит.,} мм
ИПР169А9С	синий	455	0,6	3,5				
ИПР169А9Л	зелёный	525	0,3	3,5				
ИПР169А9Ж	жёлтый	555	0,15	2	700	350	0,17	1
ИПР162А9Ж	оранжевый	590	0,15	2				
ИПР169А9К	красный	625	0,28	2				

Основные параметры светодиодов

рактеризующий погрешность аппроксимации ПИ элементарным ПИ, изменяется от 0,0025 (при $\varphi = 90^{\circ}$) до 0,013 (при $\varphi = 180^{\circ}$).

Схема монтажа СД показана на рис. 5. СД 1 припаян к теплоотводящему элементу 2 (медная пластина толщиной 0,5 мм), который зажат винтами в пазу медного стрежня 5. Продольное движение стержня 5 происходит в медном цилиндре 3. Продольное движение цилиндра 3 происходит в изоляторе из капролона 4. Радиатор 6 увеличивает теплоотвод от СД. Источником питания СД служит эмиттерный стабилизатор напряжения на транзисторе с большим коэффициентом β .

Блок излучателей представляет собой диск диаметром 150 мм, вращающийся вокруг оси, с размещёнными по окружности пятью излучателями по рис. 5 и пятью источниками питания, и обдуваемый снизу микровентилятором. Нужный СД подводится к диафрагме 1 (рис. 3) двигателем ДВ через безлюфтовый редуктор. После установки СД вращение диска с излучателями и источниками питания может быть заторможено упором бегунка Б в обрезиненный диск. Угол поворота диска вокруг оси вращения измеряется преобразователем ЛИР120А, который отображает его количеством импульсов относительно импульса R. Импульсы B, A, R с датчика ЛИР120А поступают на магистральный приёмник М4 на микросхеме 555ИП11 и далее через разъём ХЗ на микропроцессор M1 Atmega16. Управление двигателем осуществляется драйвером M3 LMD18200. Программа в микропроцессор М1 записывается через разъём Х5. Программное обеспе-

Рис. 6. Поляризационный блок

чение микроконтроллера М1 реализует функцию сервопривода, в котором роль датчика выполняет угловой преобразователь МЗ ЛИР120А, а функцию силового моста выполняет драйвер LDM18200. Обратная связь сервопривода работает по принципу ПИД-регулятора, вычисляющего скорость и направление движения в зависимости от разности между текущей координатой и требуемой. Благодаря этому текущая координата всегда стремится к требуемой. В свою очередь, требуемая координата, а точнее связанная с ней переменная, при выполнении команды движения, меняется по математическому закону, обеспечивающему плавный старт электропривода и его плавное торможение до нулевой скорости в точке окончания движения. Уровни ускорения и торможения электропривода задаются отдельной переменной в программе микроконтроллера. Плавные ускорение и торможение и обратная связь координат с помощью ПИД-регулятора обеспечиваются стандартной математикой числового программного управления (ЧПУ).

Управление ИИ может осуществляться как с персонального компьютера, так и с пульта. Передача управляющих команд с персонального компьютера осуществляется через разъём X1 и микросхему M2 MAX485.

Пульт позволяет плавно перемещать положение излучателя, используя три градации скорости. Перемещение с большой скоростью позволяет быстро перемещать привод на нужный угол. Низкая скорость позволяет более точно юстировать положение излучателя. Имеется также команда начальной настройки системы координат излучателя, по реперному импульсу выхода R углового преобразователя ЛИР120А. Пульт управления также позволяет записывать во внутреннюю память микроконтроллера координату текущего положения привода, чтобы иметь возможность в любой момент перехода в эту точку. Таких записанных положений может быть до 5. С помощью команд с пульта управления можно в любой момент переходить в любую из 5 записанных во внутренней памяти точек.

Программа управления с персонального компьютера имеет те же самые возможности, которые обеспечивает встроенный пульт управления. Кроме того, командами с компьютера можно устанавливать положение излучателя непосредственно на нужный угол с точностью, которую обеспечивает угловой преобразователь ЛИР120А – 0,009°.

Вместо механического блока может быть подключён ПБ (рис. 6). Управление положением БО фазового элемента ПБ аналогично описанному выше.

Работ	в Наст	ройки Порт						
учное	движен	ие	Penep					
<	>	0,00000	\$	1	0	Перейти	Записать	Home
<	>	0.000000	٢	1	0	Перейти	Записать	Home
<	>	0.000000	٢	1	0	Перейти	Записать	Home
<	>	0.000000	٢	1	0	Перейти	Записать	Home
<	>	0,000000	٢	1	0	Перейти	Записать	Home
Шаг гр	адусы	Перейт	ивточ	ĸy				
0.01	.01 0.1				2			
1.0	10.0	Получить координаты						

Рис. 7. Пример работы компьютерной программы для управления пятью излучателями

Компьютерная программа позволяет совместно управлять несколькими (до пяти) устройствами вроде механического блока и ПБ. Она имеет три диалоговые вкладки – «Работа», «Настройки», «Порт» (рис. 7). Две последние из них, соответственно, содержат разные настройки, включая порт связи, разрешающую способность позиционирования, пока единую для всех осей движения, и предельную скорость. На рис. 7 показана диалоговая вкладка команд управления движением. В этом окне видны пять горизонтальных массивов клавиш и текстовых полей, расположенных в одну «строку». Каждая такая группа элементов связана с управлением одним из пяти излучателей.

Компьютерная программа написана на языке C++ с помощью открытого программного обеспечения *QtCreator* версии 4. Этот инструмент содержит свободный компилятор GCC-4.7 и популярную свободную интерфейсную библиотеку *Qt* версии 4. Такое решение позволяет не только писать программы с современным интерфейсом пользователя, но и скомпилировать их под любую платформу, включая *Windows* и *Linux*, для которой в сети Интернет есть собранная библиотека *Qt*. Таким образом, программа может без изменений быть скомпилирована даже для большинства т.н. «встраиваемых» (*embedded*) промышленных компьютеров, если для них есть библиотека *Qtembedded 4.0* или *5.0*.

Заключение

Материал статьи позволяет определять основные параметры высокоинтенсивного квазимонохроматического ИИ поляризационного нефелометра, измеряющего матрицу *D* в интервале углов $\varphi = [\varphi_{\min}, \varphi_{\max}]$, а также его конструктивные особенности и принцип работы. Внешний вид ПБ характеризует конструкцию блока высокоточного управления ФЭ.

Благодарности

Авторы выражают признательность начальнику отдела ОАО «НИИ ПП» Н.Н. Бакину за консультации по применению современных СД.

СПИСОКЛИТЕРАТУРЫ

1. Прожекторный луч в атмосфере: Исследования по атмосферной оптике / Ю.С. Георгиевский, А.Я. Дривинг, Н.В. Золотавина и др.; Под общ. ред. проф. Г.В. Розенберга. – М.: Изд. АН СССР, 1960. – С. 146–174.

2. Горчаков Г.И., Розенберг Г.В. Измерение матрицы рассеяния света в приземном слое атмосферы // Изв. АН СССР. Физика атмосферы и океана. – 1965. – Т. 1, № 12. – С. 1279–1287.

3. *Горчаков Г.И.* Матрицы рассеяния света приземным воздухом // Изв. АН СССР. Физика атмосферы и океана. – 1966. – Т. 11, № 6. – С. 593–605.

4. *Perrin F.* Polarization of light scattered by isotropic opalescent media // J. Chem. Phys. – 1942. – Vol. 10, No. 7. – P. 415–427.

5. Ван де Хюлст Г. Рассеяние света малыми частицами; Пер. с англ. Т.В. Водопьяновой / Под ред. В.В. Соболева. – М.: ИИЛ, 1961. – 536 с.

6. Ошлаков В.Г. Оптимальный измеритель матрицы рассеяния // Оптика атмосферы и океана. – 1992. – Т. 5, № 11. – С. 1190–1193.

7. *Ошлаков В.Г., Борков Ю.Г.* Численный анализ аппаратной матрицы поляризационного измерителя // Оптика атмосферы и океана. – 2002. – Т. 15, № 7. – С. 635–640.

8. Сидоров В.Н. Проточный поляризационный нефелометр // Изв. АН СССР. Физика атмосферы и океана. – 1979. – Т. 15, № 7. – С. 763–768.

9. Лукшин В.В., Исаков А.А. Оптические характеристики дымовых аэрозолей // Изв. АН СССР. Физика атмосферы и океана. – 1988. – Т. 24, № 3. – С. 250–257.

10. Дейрменджан Д. Рассеяние электромагнитного излучения сферическими полидисперсными частицами. – М.: Мир, 1971. – 165 с.

11. *Гуревич М.М.* Фотометрия: теория, методы и приборы. – Л.: Энергоатомиздат, ЛО, 1983. – 268 с.

12. *Иванов А.П.* Оптика рассеивающих сред. – Мн.: Наука и техника, 1969. – 592 с.

13. Росато А., Скорпио М., Сибилио С., Чампи Дж. Установка для измерения фотометрических характеристик ряда светильников со светодиодами // Светотехника. – 2017. – № 1. – С. 43–48.

14. Берген Э. Фотометрия осветительных приборов со светодиодами // Светотехника. – 2017. – № 4. – С. 14–18.

Ошлаков Виктор Григорьевич, кандидат физ.-мат. наук. Старший научн. сотрудник Института оптики атмосферы им. В.Е. Зуева СО РАН. Область научных интересов: поляриметрия, поляризационная фильтрации, активная локация, распространение поляризованного излучение в среде, физика аэрозолей и электронная техника

Щербаков Анатолий Петрович, кандидат физ.-мат. наук. Старший научн. сотрудник Лаборатории молекулярной спектроскопии Отделения спектроскопии атмосферы Института оптики атмосферы им. В.Е. Зуева СО РАН. Область научных интересов: молекулярная спектроскопия, автоматизация обработки измерений