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ABSTRACT

The physical model of the radiance field is simi-
lar in some aspects to the elementary particle trans-
port theory under the assumptions of the classical 
mechanics. Disregarding the differences in the used 
nomenclatures, it can be shown that the transport 
equations for the radiance field are identical to those 
for the particle flux density. Since the end of the 19th 
century, both theories have been developing in par-
allel, thereby enriching each other. In other words, 
a breakthrough, which has been made in one the-
ory, readily contributes to the significant progress 
in another one. Nowadays the accuracy achieved 
in the experiments with particles is close to the li-
mit, which allows validating the relationships de-
rived within the light scattering theory. Besides, the 
experiments with particles are free from uncertain-
ties in the scattering medium, which are typical for 
atmospheric remote sensing applications. In this pa-
per, a new algorithm is described, which is derived 
by analogies between these theories. It is applied for 
calculating the electron flux elastically scattered by 
plane-parallel layers of a solid with the strongly for-
ward peaked phase functions. The calculations are 
compared against the experimental angular distribu-
tions of electrons, which are elastically reflected by 
the two-layer solid samples.

Keywords: transport theory, small-angle appro-
ximation, light scattering, electron spectroscopy, in-
variant imbedding method

1. INTRODUCTION

The formulation of the transport theory for el-
ementary particles is like the laws of the light 
beam propagation considered in the ray approxi-
mation framework. Moreover, these laws are valid 
for all classical particles, if they can be localized 
in space. The ray approximation can be regarded 
as a case of a more general quantum physical con-
cept [1], in which a photon is considered as a small 
particle moving along a trajectory; the latter is re-
ferred to as a “ray.” The density of the photon flux 
is associated with the radiance ˆ( , )L r l  at the given 
point r in the direction l̂ . Under this setup, the ra-
diance field is given by the radiative transfer equa-
tion (RTE):

 
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , ) ( , ) ,

4
L L L x d∇ = − + ′ ′ ′∫l l l l l l l



r r rσ
ε

π
 (1)

here e and s are the extinction and scattering coeffi-
cients, respectively, while ˆ ˆ( , )x ′l l  is the single scat-
tering phase function. Initially, the RTE was intro-
duced in [2] for a medium without scattering. In this 
case, for optically thin media, the RTE is reduced 
to the Bouguer law, i.e. exponential brightness at-
tenuation along a ray.

The transfer equation for particles looks like 
Equation (1), namely,
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here ˆ( , )r lψ  is the particle flux density at the given 
point r along the direction l̂ , elσ  is the elastic scat-
tering cross-section, while inσ  is the inelastic scat-
tering cross-section.

Equations (1) and (2) can be used to determine 
the flux density of photons and electrons reflected 
by multi-layered inhomogeneous media with the 
underlying surface. Essentially, they are the basis 
for the forward modelling in the Earth remote sens-
ing retrieval codes and in the electron spectroscopy 
processing algorithms (describing the process of the 
electron lithography, determining the backscatter 
factor in the X-ray spectral analysis as well as ana-
lysing the X-ray photoelectron spectroscopy (XPS) 
and reflected electron spectroscopy (RES) data).

The description methodologies of both elec-
tron and optical scattering are based on the trans-
port equations. Therefore, the methods designed for 
solv ing optical problems can be used in the prob-
lems related to atomic particle scattering in solids 
[3–5].

By using the electron spectroscopy framework, 
the problem of the quantitative composition analy-
sis of samples can be readily solved. However, such 
an analysis of the experimental data typically re-
quires a model of the multiple elastic and inelastic 
scattering of electrons in solids. 

Retrieval of the component composition of 
multi-layered samples is an ill-posed problem. It 
incorporates the analysis of the energy spectra of 
emitted electrons and extracting the information of 
the interest. In this regard, there are additional re-
quirements and constraints on the scattering signal 
modelling algorithms and their robustness.

The state-of-the-art methods of the XPS and the 
elastic peak electron spectroscopy (EPES) analy-
sis are based on rather simplistic models, in which 
the process of multiple elastic scattering is neglect-
ed. One of the representatives of such models is 
the straight-line approximation (SLA) [6, 7]. The 
main advantage of SLA-like models consists in their 
simplicity. However, the SLA leads to a biased esti-
mate of the scattered electron signal [8]. Essentially, 
the error of the SLA approach is because the elastic 
scattering cross-section elσ  in the situations, which 
are relevant for XPS, RES, and EPES, exceeds the 
inelastic scattering cross-section, i.e. el inσ σ> . Sev-

eral techniques were developed in order to compen-
sate the SLA bias. However, they are ad hoc and do 
not take rigorously into account all the factors that 
cause the methodological errors. Unlike in remote 
sensing applications, in the electron scattering spec-
troscopy, there are several independent methods for 
the layer-by-layer component analyses of samples. 
In its turn, it is possible to experimentally validate 
techniques, which describe the reflection proces-
ses from multi-layered inhomogeneous media. Be-
sides, it is possible to control the composition of the 
sample under study, even at the stage of its prepa-
ration. In this regard, the layer-by-layer composi-
tion retrieval based on the analysis of electron spec-
tra can be performed by using techniques provided 
by the radiative transfer theory. In this paper, it will 
be shown that the experimental data on angular dis-
tributions of elastically reflected electrons [9–11] is 
beneficial for validation of the radiation codes and 
models used in the Earth remote sensing operational 
algorithms [12–15]. The similar ideas were behind 
the verification study [16].

The invariant imbedding method was proposed 
by Ambartsumian in the 40s of the last century 
to describe the processes of radiation transfer in the 
atmospheres of stars and planets [17, 18]. Essential-
ly, this method converts the RTE for the radiance 
into the equations for the reflection and transmis-
sion coefficients of a slab. The method was further 
developed in the works of Chandrasekhar, Sobolev, 
and others [19, 20], primarily, for spherical and 
Rayleigh single scattering phase functions [17–20]. 
In these cases, an iterative procedure appeared to be 
efficient. As the first approximation, a single scatter-
ing solution was used [18]. Typically, four iterations 
were enough to achieve the convergence. However, 
strongly forward peaked phase functions with the 
dominant small-angle scattering are of great prac-
tical importance. These are the cases relevant for 
the electron scattering in solids and the photon scat-
tering in a turbid medium. In this paper, it will be 
shown that in the case of the dominant small-angle 
scattering it is possible to simplify the solution pro-
cedure since the nonlinear Chandrasekhar equations 
can be linearized.

The forward peaked phase functions were con-
sidered by Gaudsmith and Saunderson [21, 22] 
to solve the electron transport equation by using the 
small-angle approximation and the spherical har-
monics method. Let us consider an infinite medi-
um with the sources of light (or particles) placed 
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in the centre (the medium boundary is placed at 
0z = ); the source satisfies the following condi-

tion: 0( 0, ) ( )ˆ ˆ ˆL z δ= = −l l l . In [23] Scott devel oped 
a technique for solving transport equations by us-
ing the small-angle approximation. Dashen [3] ap-
plied the Ambartsumian equation, which solves the 
boundary problem of reflection from a semi-infinite 
medium, to describe the electron scattering pro-
cess. Successful attempts to solve the linearized 
Ambartsumian and Chandrasekhar equations in the 
small-angle approximation were made in [4, 24]. 
Throughout the paper, the small-angle approxi-
mation is associated with the following small 
parameter

( ) / (0) 1.x x π   (3)

In this paper, the small-angle approxima-
tion is used to derive analytical expressions for ra-
diation reflection processes both from a semi-in-
finite layer and from layers of finite thickness. The 
small-angle solutions of the Chandrasekhar equa-
tion for the transmission function will be given. 
It will be shown that the small-angle approxima-
tion can be used only for Chandrasekhar equations 
(written for the transmission function [19]), but not 
for the alternative formulation from [25]. An iter-
ative procedure will be constructed that solves the 
problem of reflection from multilayer samples with 
an underlying surface at the bottom.

The main advantage of approximate analytical 
solutions consists in the high computational speed, 
which is a prerequisite for solving inverse prob-
lems by the fitting procedure. Note that the latter is 
the most robust approach to deal with the ill-posed 
problems of mathematical physics, namely, the re-
mote sensing retrieval and quantitative composi-
tion analysis using the electron spectroscopy [26, 
27].

The paper will present methods for the numer-
ical solution of the Chandrasekhar equations. Cur-
rently, Monte-Carlo (MC) simulations [28, 29] are 
mainly used to describe the energy and angular 
spectra of electrons. However, MC codes require 
much computational time: e.g., on a standard lap-
top, this time ranges up to several minutes; whereas 
the same simulations, but based on the numerical 
solution of the Chandrasekhar equations present-
ed in this paper, are performed within fractions 
of a second. Note, that the idea of using numer-
ical methods to interpret the spectra of the elec-

tron spectroscopy is inherited from the radiative 
transfer theory.

The approbation of the approximate small-angle 
methods developed in this work is performed by us-
ing a comparison with exact numerical solutions as 
well as with the experimental data.

2. CHANDRASEKHAR EQUATIONS FOR 
REFLECTION AND TRANSMISSION 
FUNCTIONS, LINEARIZATION 
PROCEDURE, SOLUTION BY USING 
THE SMALL-ANGLE APPROXIMATION

The equation for the reflection function derived 
by Chandrasekhar [19] for a layer of finite thickness 
reads as follows:
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∫
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where t is the dimensionless layer thickness, m  
is the azimuthal expansion index, r is the reflec-
tion function, x is the single scattering phase func-
tion, / ( )el el inσ σ σΛ = +  is the single scattering al-
bedo. Consider the azimuthal expansion

( )
0 0

0 0

( , , , )

( , , )exp ,m
m

im

ρ τ µ µ ϕ ϕ

ρ τ µ µ ϕ ϕ

− =

 = − ∑   (5)

with J
0
=arccos m

0
, j

0
 and J=arccos m, j being the 

polar and azimuth angles of probing and viewing 
angles, respectively; the polar angles are defined 
with respect to the axis, which is perpendicular 
to the sample surface and looks towards the surface.

Similar to Equation (4), the equation for the 
transmission function T(t,m, m

0
,j - j

0
) reads as 

follows (Eqn. 6):
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3. NUMERICAL SOLUTION FOR 
REFLECTION AND TRANSMISSION 
FUNCTIONS

We note that the methods discussed in this sec-
tion were first developed for solving the problems 
of radiative transfer and significantly enriched the 
theory of electron transfer as well. To get the ma-
trix form of Equation (1), the continuous depen-
dency on µ′  should be replaced with a discrete set 
of N values iµ ′ , while the integrals should be rep-
resented through the quadrature formulas. Then 
the reflection function Sm turns into a matrix of 
dimension N×N, where si are the weights of the 
quadrature method, iµ′  are the quadrature nodes 
for the cosines of the incidence/observation angles, 

diag ./( )i iw s µ=
Bearing that in mind, Equation (4) takes the fol-

lowing form:

( ) ( ) ( )

( ) ( ),

m m m

m m

A A

C D

ρ τ ρ τ ρ τ
τ

ρ τ ρ τ

∂ + + =
∂

= +  (7)

with

 ( )diag 1 / , , .m m mA x w C x D wx wµ + − −= − Λ = Λ = Λ

The index “+” in the phase function is relat-
ed to the process, in which the propagation direc-
tion after the scattering event is preserved, while 
the index “–“ indicates that the upward propaga-
tion changes into downward one and vice versa.

Equation (7) is referred to as the differential alge-
braic Riccati equation [30, 31]. It can be solved nu-
merically by several numerical techniques [31–34]. 
In this paper, we use the BDF (Backward Differen-
tial Formula) method [34]. The situation is some-
what simplified since the matrix mx +  is symmetric.

Having performed a similar discretization for 
particles elastically scattered inside a layer, we ob-
tain the following matrix equation for the transmis-
sion function:

( ) ( )0 0
m mT A T Cτ τ

τ
∂ + =′
∂

, (8)

with 

1
0

0 0 0
0 0

1

0 0
0 0

1 1

0 0
0 0
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m
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T dT x x T

dx

d dx T

τ µ µ τ µτ µ µ µ µ µ µ τ µ µ
µ τ µ µ

τ µρ τ µ µ µ µ ϕ ϕ
µ µ

µ µρ τ µ µ µ µ ϕ ϕ τ µ µ ϕ ϕ
µ µ

−

−

 ∂ ′+ = Λ − + Λ +′ ′ ∂ ′ 

  ′+Λ − − +′ ′ ′  ′ 

′ ′′+Λ − −′ ′ ′′ ′ ′′ ′′ ′′
′ ′′

∫

∫

∫ ∫

(6)

Fig. 1. The reflection functions for the semi-infinite medium. The normal angle of incidence. The calculations are per-
formed for the Henyey-Greenstein phase function. Plot (a) shows the influence of the non-linear term on the reflection 
function. Plot (b) illustrates the increase of error of the small-angle approximation with the phase function smoothness. 

The solid line is the numerical solution (MDOM), the dashed line is the small-angle approximation. The normal angle of 
incidence. The single scattering albedo is 0.67. Numbers with arrows are the asymmetry parameters of the  

Henyey-Greenstein phase function
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ρ τ
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Let us find the solutions of the equations ob-
tained considering the nonlinear terms and the 
solutions of the linearized matrix equations based 
on the BDF method. For elastic scattering, we use 
the Henyey-Greenstein phase function, which is 
well-known in optics. The numbers in Figs. 1 and 
2 show the value of the asymmetry parameter g, 
which determines the degree of elongation of the 
Henyey-Greenstein phase function:

 2

2 3/2
0

1( ) (2 1) ( ),
(1 2 )

l
HG l

l

gx l g P
g g

µ µ
µ

∞

=

−= = +
+ − ∑  (9)

where Pl are the Legendre polynomials.
The solution of Equation (7) (and consequent-

ly, Equation (4)) is shown in Fig. 1 with solid lines, 
while the dashed line depicts the solution to Equa-
tion (7) with non-linear term neglected (i.e., the se-
cond term on the right-hand side). The plots in Fig. 1 
reveal the increasing of the computation error of the 
linearized equations. That is quite an expected re-
sult since the phase functions with 0,5g ≤  do not 
have a dominant small-angle scattering part. How-
ever, even in case of violation of condition (3), the 
linearized equations provide a result with an error 
less than 10%.

In Fig. 2, the solid lines represent the solu-
tion of Equation (8), the dashed line shows the solu-
tion of Equation (8) with neglected terms containing

( )0
mρ τ . In other words, this is a solution to Equa-

tion (6), in which the last two terms on the right-
hand side are neglected.

4. ANALYTICAL SOLUTIONS OF 
LINEARIZED EQUATIONS FOR THE 
REFLECTION AND TRANSMISSION 
FUNCTIONS

The analysis performed on the basis of numerical 
solutions indicates that for strongly forward peaked 
phase functions (see condition (3)), the processes of 
reflection and transmission through the layer can be 
described by using the following equations:
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Fig. 2. The transmission functions for the layers of thick-
ness 0.1 ltr. Plot (a) shows the influence of the non-linear 
term. The solid line is the result with the non-linear term, 
while the dashed line shows the result without non-linear 
term taken into account. Plot (b) shows the increasing of 
the small-angle approximation error with the smoothness 
of the phase function. The solid line is the numerical solu-
tion (MDOM), the dashed line is the small-angle approxi-
mation. The angle of incidence is 45°, the single scattering 

albedo is 0.54. Numbers with arrows are the asymmetry 
parameters of the Henyey-Greenstein phase function
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The method of spherical harmonics is based 
on the representation of functions through the 
Legendre polynomial series. However, to be able 
to apply the method of spherical harmonics (which 
is a standard procedure for analytic solution of 
Equations (10) and (11)), based on the orthogonali-
ty property of the Legendre polynomials within the 
domain [–1,1], it is necessary to perform the analyt-
ic extension of the integrands to the domain (0, –1). 
For Equation (10), this step is trivial since in the do-
main (0, –1) the integrand goes to zero due to con-
dition (3); the analytical continuation for Equa-
tion (11) is not straightforward. There are several 
approaches to deal with this problem (see, e.g. [2]). 
The most efficient implementation is given in [35, 
36].

The solution of Equation (11), in which the in-
tegration limits are extended into the range [–1, 1] 
in the integral term, can be found by using the idea of 
Goudsmit and Saunderson: namely, in the multipli-
er 1/µ  in the first term of the left-hand side of (11) 
and in the exponent in the first term of the right-
hand side of (11) (with respect to 0/τ µ ), the values 

0,µ µ  are considered to be constants. This approxi-
mation means replacing the real path by the projec-
tive one. A significant error occurs if the transport 
path of a photon or electron ( ) 11

tr el inl n σ σ −−= +  and 
the average electron path between elastic collisions 

( )1/el ell nσ= are comparable. Note that in the case 
of the Henyey–Greenstein phase function we have

( ) ( )/ / 1 / 1 .tr el el el inl l gσ σ σ= + = −   (12)

The error in this case does not exceed 5%, if 
/ 1tr ell l  .
Considering the assumptions made after the sub-

stitution of the Legendre polynomial expansions 
into Equation (11), we obtain a system of separa-
ble differential equations; applying the boundary 
condition ( ) 1lmT τ = , the solution for the transmis-
sion function can be derived:
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Equation (10) is solved by the method of it-
erations, which provides the analytical exten-

sion in a systematic way. A detailed description of 
this procedure is given in [35, 36]. The final result is
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where ( ) 1
1

t

x

E x t e dt
∞

− −= ∫  is the integral exponent.

Figs. 1 and 2 illustrate the comparison between 
the exact numerical solution and the small-angle ap-
proximation model.

5. REFLECTION FROM MULTILAYER 
STRUCTURES

We consider reflection from multilayer struc-
tures using the angular distributions of electrons, 
elastically reflected from solids, as an example. 
In the literature, there are experimental data on the 
angular distributions of electrons reflected by ho-
mogeneous solids as well as by multilayer samples 
[9–10, 37–42].

Let us consider a two-layer sample (Fig. 3). 
In accordance with the described scheme, the re-
flection function for a two-layer sample can be rep-
resented as
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  (15)

or, exploiting the one-speed approximation and the 
small angle approximation,
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The computations for three-layer systems can 
be performed by using the relation, which is similar 
to Equation (16), namely,



Light & Engineering  Vol. 27, No. 2

94

( ) ( ) ( )
( ) ( )

123 1 2 3 1 1 23 2 3

1 1
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exp 1 ,
lm lm lm
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R R R

x

τ τ τ τ τ τ

τ µ µ− −

= + ×

 × − − Λ +    (17)

here ( )23 2 3,lmR τ τ  is computed by using Equa-
tion (16) with the following index perturbation: 
1 2;  2 3→ → . 

Fig. 4 shows the angular distributions of elec-
trons, elastically reflected by the two-layer sys-
tems (the layer of Be on the Au substrate), comput-
ed by using the exact numerical solutions and the 
small-angle solution (16).

6. CONCLUSION. MAIN RESULTS

The paper presents several analytical solutions 
that describe the radiance transmission and reflec-
tion in turbid media with the satisfactory accuracy. 
The derived solutions describe the radiation scatter-
ing in multi-layered inhomogeneous media. The ap-
proach developed in this work is based on the meth-
ods developed in radiative transfer for spherical and 
Rayleigh phase functions, as well as meth ods pro-
posed by Ambartsumian, Chandrasekar, Sobolev, 
and other remarkable scientists, who solved the 
problems of light scattering in the atmo spheres 
of stars and planets [17-20]. In the present work, 
it is shown that the methods designed in [17–20] 
are efficient in the problems, when the scattering 
phase functions are strongly forward peaked (con-
dition (3)).

Analytical solutions such as (13) and (14) make 
it possible to perform calculations with the high 
speed and accuracy. Given that, the error of the 
mod els as a function of the most relevant parame-

Fig. 4. Angular distributions of electrons, which are reflect-
ed by the gold samples with a beryllium layer on the top. 
The solid line corresponds to the exact numerical solution 

of Equations (7) and (8), dashed line show the results of the 
small angle approximation (Equations (13) and (14)), while 
the circles show the experimental data [10]. The computed 
Be layer thicknesses are: 1 – 0 nm, 2 – 0.5 nm, 3 – 2.5 nm, 

4 – 3.8 nm

Fig. 3. The two-layer model of reflection. W = (m,j), t = 
d(sin+sel), the curved line corresponds to the reflection 

function, while the straight line is associated with the trans-
mission function

ters (namely, the asymmetry parameter and the sin-
gle scattering albedo) can be analysed.

The computational speed is an essential factor 
in the inverse problem solution design. For exam-
ple, when the reflection function from multilayer 
structures is considered, we need to determine the 
layer thickness. Typically, it is retrieved by using 
the fitting method, in which the direct problem is 
solved several times.

Due to the integration of numerical methods of 
the photometric light scattering theory into elec-
tron scattering problems for determining the hy-
drogen isotope profiles by the elastic peak elec-
tron spectroscopy (EPES), the sensitivity of the 
EPES technique has been increased by order of 
magnitude. In fact, the sensitivity has reached al-
most 10 % for hydrogen isotopes in plasma-faced 
materials [43].

Radiative transfer techniques applied for the 
physical interpretation of the effects of electron and 
ion scattering have brought the optical terminology 
(such as “brightness rotation” and “underlying sur-
face”) into electron and ion spectroscopy [44]. The 
authors of this paper are confident that the presented 
small-angle solutions will be used for solving prob-
lems of light scattering in turbid media, as well as 
sea optics problems.
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