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ABSTRACT

Classical optimization and search algorithms 
are not effective for nonlinear, complex, dynam‑
ic large-scaled problems with incomplete informa‑
tion. Hence, intelligent optimization algorithms, 
which are inspired by natural phenomena such as 
physics, biology, chemistry, mathematics, and so on 
have been proposed as working solutions over time. 
Many of the intelligent optimization algorithms are 
based on physics and biology, and they work by 
modelling or simulating different nature-based pro‑
cesses. Due to philosophy of constantly research‑
ing the best and absence of the most effective al‑
gorithm for all kinds of problems, new methods 
or new versions of existing methods are proposed 
to see if they can cope with very complex optimi‑
zation problems. Two recently proposed algorithms, 
namely ray optimization and optics inspired opti‑
mization, seem to be inspired by light, and they are 
entitled as light-based intelligent optimization algo‑
rithms in this paper. These newer intelligent search 
and optimization algorithms are inspired by the 
law of refraction and reflection of light. Studies of 
these algorithms are compiled and the performance 
analysis of light-based intelligent optimization al‑
gorithms on unconstrained benchmark functions 
and constrained real engineering design problems 
is performed under equal conditions for the first 
time in this article. The results obtained show that 
ray optimization is superior, and effectively solves 
many complex problems.

Keywords: optimization, optics inspired optimi‑
zation, ray optimization, artificial intelligence

1. INTRODUCTION

Optimization is present everywhere in our 
lives –  from engineering to industrial design, from 
business planning to travel planning [1]. Optimiza‑
tion has played an even more important role in our 
lives recently. Evolutionary and population-based 
optimization methods are very popular and wide‑
ly used in many engineering fields [2]. These op‑
timization techniques choose the best of the many 
available options intelligently, and they provide a 
suitable environment for the solution of problems 
[1]. Most optimization algorithms require a math‑
ematical model for the system model. Establishing 
a mathematical model for complex systems is often 
difficult. Even if the model is established, the solu‑
tion time cannot be used due to the huge cost [3]. 
That is, the design of an optimization algorithm has 
a challenging process, which is caused by physical 
events to obtain appropriate global and local search 
operators [2].

Classical optimization methods may be insuf‑
ficient and unsuitable for solving complex nonlin‑
ear large scaled search and optimization problems. 
Classical methods are not effective in adapting them 
to the problems of interest. This, in many cases, 
requires some assumptions that may be difficult 
to confirm. Often, due to the natural solution mech‑
anisms of solving classical search methods, the 
problem concerned is modelled such that the meth‑
od will manage it. The strategy for solving classical 
methods usually depends on the types of objectives 
and constraints, as well as on the types of decision 
variables. Their effectiveness also strongly depends 
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on search space, the number of constraints, and 
the number of decision variables. Another import‑
ant shortcoming is that they do not stand for com‑
mon target strategies for different types of constraint 
functions and variables. In other words, classical 
methods solve models that have a specific type of 
objective function or constraint functions. However, 
many optimization problems, such as management, 
sports, engineering, economy, computer require 
concurrent different types of objective functions, 
constraint functions, and decision variables, simul‑
taneously. Intelligent optimization and search algo‑
rithms are proposed and efficiently used in many 
different fields, because they are computational‑
ly powerful, and their transformations are easy [3].

General purposed artificial intelligence optimi‑
zation algorithms are divided into various groups, 
such as biology-based, social-based, chemi‑
cal-based, physics-based, music-based, mathemat‑
ics-based, sports-based, swarm-based, plant-based, 
light-based, and water based. Their combinations 
can also be considered as a hybrid category. OIO 
and RO are the newest artificial intelligence opti‑
mization algorithms inspired by the light behaviour. 
OIO is inspired by the optical characteristics of 
convex and concave mirrors that can be used for 
searching the best solutions for different types of 
optimization and search problems. When the light 
rays fall on the convex mirror, they are reflect‑
ed from the principal axis, and divergence occurs. 
When they hit a concave mirror, these rays are re‑
flected in the direction of the principal axis, and 
convergence occurs. The exploration and exploita‑
tion capabilities of OIO are adjusted considering the 
convex and concave mirror phenomena [4, 5]. Ac‑
cording to light refraction law of Snell, light is re‑
fracted when it passes through environments with 
different luminance factors. Inspired by this feature 
of the light in the RO, it uses the light as a candidate 
solution. The transition of the ray is used to obtain 
the optimal solutions [6].

RO was used to reduce the weight of truss under 
necessary constraints by Kaveh and Khayatazad in 
2013 [7]. During this study, numerical results were 
compared for the five truss structure, and it was ob‑
served that the obtained truss weight was at a satis‑
factory level. RO gave better results than GA [8], 
ACA [9], BBBC [10], and PSO [11] algorithms. 
However, its performance was slightly lower than 
HPSACO [12], which is a hybrid method. Kaveh 
and his colleagues developed RO in 2013 and ad‑

opted a new approach to produce new candidate 
solutions that had no restrictions on the number 
of variables of the problem interested. That is why 
there was no need to group the variables in the algo‑
rithmic process of RO [13]. With this new RO de‑
veloped, a better balance between the exploration 
and exploitation was achieved. In addition, the al‑
gorithm was improved considering transport con‑
straints [14]. Using the RO in 2014, an effective hy‑
brid method for the shape and size optimization of 
the truss structures was implemented [14]. For this 
hybrid developed algorithm where PSO, HS, and 
RO were used together [14]. In this hybrid method, 
PSO algorithm was used as the main engine. While 
the movement vector was developed by the RO, HS 
was used to enhance the local search skill. The ex‑
perimental results of this hybrid method showed 
that it gives better results than the existing mathe‑
matical and artificial intelligence optimization algo‑
rithms [14].

The OIO algorithm was applied to constrained 
problems, namely mechanical real engineering 
problems by Kashan in 2015 [5]. These tests were 
performed with five real-world engineering prob‑
lems. The performance of OIO was compared with 
many artificial intelligence optimization methods, 
such as CPSO [15], PSRE [16], RSPSO [17], IHS 
[18], FSA [19], and SES [20]. OIO was reported as 
the outperformed algorithm among others [5]. In 
2015, a master thesis was presented on the develop‑
ment of a new method for solving combinatorial op‑
timization problems with permutation-based solu‑
tion structures using the OIO method [21]. In 2015, 
a master thesis was published on the design of im‑
age processing methods using OIO [22]. In 2015, the 
OIO algorithm was used to solve the traveling sales‑
man problem by Badrloo and Kashan [23]. In 2015, 
Badrloo and Kashan used the OIO method to solve 
the combinatorial quadratic assignment problem 
[24]. In 2016, OIO algorithm was used for routing 
and clustering in wireless sensor networks [25]. The 
cluster head choice and routing problem in wireless 
sensor networks is a known optimization problem 
due to the high computational complexity of large-
scale networks. In their study, OIO was adapted for 
cluster head choice problem considering distance, 
energy, and node level parameters.

The OIO based routing method was proposed 
to calculate the path to the base station from each 
cluster head, considering the same parameters, such 
as distance, energy, and node level. The perfor‑
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mance evaluation of OIO was extensively evaluated 
and compared with other routing methods. OIO al‑
gorithm was shown to be more successful than the 
other techniques [25]. The conventional techniques, 
such as HF [26], EADC [27], and DHCR [28] were 
not suitable for cluster head choice and routing 
problems. As the size of the network increased, the 
performance of these conventional techniques rap‑
idly fell. In recent studies, it was suggested that ar‑
tificial intelligence method could be developed that 
maximizes the coverage area and distributes the 
nodes to minimize the number of nodes [25]. In 
2016, optimal load frequency controller gains were 
optimized by Ozdemir and Ozturk using an OIO al‑
gorithm in a two-area power system. In this appli‑
cation, OIO was used to find optimal controller pa‑
rameters of PID that controlled the frequency in a 
two-area power system [29]. The performance of 
the OIO for this problem was compared with the 
performance of the PSO and bacteria foraging op‑
timization algorithm [30]. It was noted that OIO is 
better than these algorithms in terms of values of 
maximum blackout and settlement time. It was sug‑
gested that the optimal PID that adjusts itself could 
be performed to increase the practical work on the 
use of OIO in this way [30].

Intelligent algorithms for optimization and 
search for solutions for effective solution of prob‑
lems of interest are proposed. One of the important 
current trends in the field of intelligent algorithms 
is the development of new search methods based on 
light. Concepts, events, and processes in light be‑
haviours seem to be an inspiring guide for the de‑
velopment of effective optimization algorithms. 
This work aims to review the most important con‑
cepts of new existing two light-based intelligent op‑
timization methods and their specific characteris‑
tics in the frame of complex optimization problems. 
The performances of light-based artificial intelli‑
gence optimization algorithms are also compared 
for the first time under equal conditions using un‑
constrained benchmark problems and constrained 
real engineering problems in this study.

2. METHODS

Nature has always been a good teacher for peo‑
ple. For instance, the invention of radar has been 
possible by the behaviour of the bats. Intelligent 
optimization methods inspired by the behaviour 
of natural beings or natural phenomena are used 

to solve problems that take a long time or mathe‑
matical models cannot be derived. In many prob‑
lems, the solution search space is infinite or so large 
that all candidate solutions cannot be evaluated. For 
this to be acceptable, it is necessary to evaluate the 
solutions and find a good solution. Evaluating solu‑
tions in such a way that they are acceptable for such 
problems means evaluating “some solutions” in the 
entire solution space. The way some solutions are 
chosen and how they are selected varies based on 
artificial intelligence method [31].

The solution proposed by artificial intelligence 
optimization techniques for solving the problem 
may be perceived as good, global, or near-global 
optimal solution [31]. Artificial intelligence optimi‑
zation algorithms are computational methods that 
are defined to find what is effective from various al‑
ternative actions to achieve any purpose or reach a 
specified goal.

Artificial intelligence optimization algorithms 
are categorized according to whether they are in‑
spired by nature or not, a number of candidate solu‑
tion they iterate is one or more, the objective func‑
tion is dynamic or static, the memory structure is 
used or not, and they use single or multiple neigh‑
bourhood structures.

The reasons for the need to use artificial intelli‑
gence optimization algorithms are:

a) The optimization problem may have a struc‑
ture in which the optimal solution finding process 
cannot be defined;

b) In terms of clarity, intelligent search algo‑
rithms can be much simpler in terms of decision 
makers;

c) Intelligent optimization algorithms can be 
used as part of the learning and precise solution 
finding process;

d) Definitions made using mathematical formu‑
las often ignore the most difficult parts of real-world 
problems; inaccurate data used to determine model 
parameters can lead to greater errors than the sub‑
optimal solution that the artificial intelligence opti‑
mization approach can produce [32].

General purposed artificial intelligence optimi‑
zation algorithms are divided into various groups, 
such as biology-based, social-based, chemi‑
cal-based, physics-based, mathematics-based, mu‑
sic-based, sports-based, swarm-based, plant-based, 
light-based, and water based. Their combinations 
can also be considered as hybrid category.
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All these population-based iterative methods fol‑
low a balance between exploitation and exploration 
as iterations progress. In general, exploration will 
be more effective in the first stages of the iteration, 
but exploitation will be strengthened towards the fi‑
nal iterations.

2.1. Ray Optimization

RO is a population-based general purposed 
stochastic artificial intelligence optimization and 
search algorithm proposed by Kaveh and Kha‑
yatazad in 2012 [6]. The light, which is also a natu‑
ral event, is refracted and changes direction accord‑
ing to the law of refraction of light when passing 
from the light environment into a dark environ‑
ment. Inspired by this feature of the light in the 
RO, it uses rays belonging to the light as a candi‑
date solution. This behaviour of light helps to ex‑
plore the search space in the first iterations, while 
it helps converge to the optimal solution in the last 
stages [6]. The optimization process ends when pre‑
determined criteria are satisfied. If the criteria are 

not met, the optimization process continues, and 
the candidate solutions are moved to their new loca‑
tion. The steps are iterated until one of the defined 
criteria is met. The flowchart of the RO is shown in 
Fig. 1 [6].

2.2. Optics Inspired Optimization

OIO is a light-based physics inspired artificial 
intelligence optimization algorithm proposed by 
Kashan [4, 5]. Optics examines light properties, 
its behaviour, and interaction with matter. Practi‑
cal applications of optics include mirrors, lenses, 
telescopes, microscopes, technology. The curved 
or spherical mirror has a curved concave or convex 
reflective surface. Most curved mirrors are shaped 
like a spherical piece.

Since the exploration and exploitation capabili‑
ties of OIO are controlled by mirror phenomena [4, 
5], as described in the introduction, the reflection 
surface of the mirror functions as a search function. 
The flowchart of OIO is shown in Fig. 2.

Fig. 1. The flowchart 
of the RO

Fig. 2. The flowchart 
of OIO



Light & Engineering Vol. 28, No. 6

55

3. RESULTS

3.1. Results within Unconstrained Benchmark 
Functions

Researchers often use benchmark functions 
to compare the search and optimization algorithms 
[33]. There are many benchmark problems that are 
defined as unimodal, multimodal, and composite. 
In addition to complex mathematical expressions, 
the benchmark functions have many local and glob‑
al minimums. Because of these features, the per‑
formance of artificial intelligence optimization al‑
gorithms is evaluated under equal conditions. In 
this paper, the performances of light-based intel‑
ligent search and optimization algorithms with‑
in Griewank, Cosine Mixture, Goldstein and Price, 
sphere, exponential, Bohachevsky1, Bohachevsky2, 
and Rastrigin benchmark functions were compared.

The performance comparison of OIO and RO, 
which are light-based optimization algorithms, is 
shown in Table 1 using benchmark functions. Light-
based optimization algorithms are also compared 
with genetic algorithm and some of its variants in 
this table [6]. The number of function evaluations 
to achieve the predefined accuracy rate (ε = fmin – 
– ffinal =10–4) is listed in this Table. Values written 
in parentheses in Table 1 show the ratio of success‑
ful runs of the algorithms according to this pre‑
defined accuracy rate. The absence of the paren‑
theses shows that the algorithm is successful in all 
runs. During the experiments, problem dimension 
for sphere function was defined as 3, problem di‑
mension for the Cosine mixture function was de‑

fined as 4, and problem dimension for other func‑
tions was defined as 2. The number of populations 
was 20, the number of function evaluations (NFE) 
was 20000, and the number of independent runs 
was selected as 50. In addition, the performance of 
light-based optimization algorithms was measured 
by choosing the exponential test function dimension 
2, 4, 8, 16 to check the performance in high prob‑
lem dimensions. When the problem dimension is 16 
and the population number is 100 in the exponen‑
tial function, NFE is determined to be 50000 and 
the obtained results are listed in Table 1. In this Ta‑
ble, GEN, GEN_S, GEN_S_M_LS are variants of 
genetic algorithms whose performance has been re‑
ported promising [10].

When examined in detail in Table 1, it is seen 
that RO in the Griewank test function gives bet‑
ter results than all other artificial intelligence opti‑
mization algorithms. The OIO algorithm produced 
better solutions in terms of the ratio of successful 
runs. Light-based optimization algorithms are much 
more successful than other methods within sphere, 
Goldstein and Price, Bohachevsky 1, Bohachevsky 
2, and exponential for n= 2 and n= 4. For exponen‑
tial n=8, RO was seen to perform better than all 
other methods. However, it is impossible to gen‑
eralize that the light-based methods are better than 
all other methods, because the OIO algorithm per‑
formed worse results in the exponential test func‑
tion than the GEN_S_M_LS algorithm. It was seen 
that RO was the most successful method in the co‑
sine mixture test function. However, it was that the 
OIO algorithm was more successful than the GEN 
and GEN_S algorithms, but it was observed that it 

Table 1. Algorithm Performances in Benchmark Functions

Benchmark function
Optimization algorithms

GEN GEN_S GEN_S_M_LS OIO RO
Griewank n=2 18838(0.91) 3111(0.91) 1652(0.99) 1825.94 1091(0.98)

Sphere n=3 9900 3040 1281 506.72 452
Goldstein and Price n=2 1478 1478 1325 1071.4 451

Exponential n=2 938 936 807 572.14 136
Exponential n=4 3237 3237 1496 1376.18 382
Exponential n=8 3237 3237 1496 2889.08 1287

Exponential n=16 8061 8061 1945 28994.14 17236(0.46)
Cosine Mixture n=4 2105 2105 1539 1673.7 802
Bohachevsky 1 n=2 3992 3356 1615 567.36 677
Bohachevsky 2 n=2 20234 3373 1636 620.7 582

Rastrigin n=2 1533(0.97) 1523(0.97) 1381 753 1013(0.98)
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was more unsuccessful than the GEN_S_M_LS al‑
gorithm. OIO seemed the best algorithm for Rastr‑
igin function.

3.2. Results within Real‑World Engineering 
Design Problems

The Tension/Compression Spring Design en‑
gineering design problem was first introduced by 
Belegundu and Arora [7]. Minimizing the weight 
of a tension/compression spring subjected to con‑
straints on a minimum deflection, surge frequency, 
and shear stress [7] was aimed at this problem. The 
problem has four non-linear inequality constraints. 
It also has three continuous variables.

During the experiments, the number of popula‑
tions was 40, NFE was 10000, and the number of 
independent runs was 50. The performance of light-
based optimization algorithms under equal condi‑
tions were evaluated. The design variable values of 
the problem and the best cost values are shown in 
Table 2. In addition, mean values and standard de‑
viation values obtained from the algorithms for this 
problem are listed in Table 3.

As shown in Table 2, RO performance is bet‑
ter than OIO algorithm for best results (fcost). It can‑
not be concluded that all the light-based optimiza‑
tion algorithms are better than the other algorithms. 
Because during the experiments, OIO algorithm 
did not find better results than Belegundu and Aro‑
ra [34]. However, as shown in Table 3, OIO gave 
more stable results than the RO algorithm accord‑
ing to the obtained standard deviation values and 
mean values.

The main object in welded beam engineering 
problem is to obtain minimum manufacturing cost 
of the welded beam subjected to constraints on 
shear stress, bulking load, bending stress, end de‑
flection, and side constraint [7, 30, 35]. It also has 
four continuous variables.

During the experiments, the number of popula‑
tions was 40, NFE was 10000, and the number of 

independent runs was 50. The performance of the 
light-based optimization algorithms was tested un‑
der equal conditions. The design variable values of 
the problem and the best cost values are shown in 
Table 4. In addition, obtained mean values and stan‑
dard deviation values are shown in Table 5. The 
success of light-based optimization algorithms was 
compared with other mathematical optimization 
algorithms.

As shown in Table 4 and Table 5, RO was more 
successful than OIO algorithm in terms of best cost 
result and mean cost result, respectively. Table 5 
shows that light-based optimization algorithms are 
much more successful than other methods such as 
Approx, David, Simplex, and Random [35]. As 
shown in Table 4, light-based optimization algo‑
rithms were experimentally demonstrated that they 
are less fitted to the local minimum and better con‑
verged to the global minimum than other methods 
used in testing in real-world engineering problems.

4. DISCUSSION

For real world optimization problems, there are 
many intelligent methods that have been inspired by 
nature or other phenomenon. Almost all of the intel‑
ligent optimization algorithms perform with meta‑
heuristic population-based search procedures that 
incorporate random selection and variation. These 
algorithms should have two key components: explo‑
ration and exploitation.

RO and OIO are two of the methods inspired 
by the concepts, events, and processes in light be‑
haviours, and they are entitled as light-based in‑

Table 2. Obtained Optimum Results from Different Methods for Tension/Compression Spring Design Problem

Method
Design variable and cost

x1 x2 x3 fcost

RO 0.051370 0.349096 11.76279 0.0126788
OIO 0.054557 0.429089 8.053812 0.0128404

Belegundu 0.050000 0.315900 14.250000 0.0128334
Arora 0.053396 0.399180 9.185400 0.0127303

Table 3. Mean and Standard Deviation Values 
for Tension/Compression Spring Design

Method
Mean and standard deviation

fmean Std. dev.
RO 0.13547 0.001159
OIO 0.01326 0.000297
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telligent optimization algorithms in this paper. Ac‑
cording to the experimental results obtained, RO 
algorithm seems better than OIO in both uncon‑
strained benchmark test functions results and con‑
strained real-world engineering problems. However, 
it is not the best algorithm when compared the oth‑
er methods. According to the No‑Free‑Lunch the‑
orem, there is no single universally most efficient 
method for every types of optimization problem. 
Though theoretically solid, No‑Free‑Lunch theorem 
may have limited impact in practice because solv‑
ing all problems and taking average performance 
are not needed. One of the main targets of optimi‑
zation problems in practice is to inquire to obtain 
high-quality possible or optimal solution in an ac‑
ceptable duration. For some types of problem, some 
methods can outperform the others. Furthermore, 
balance between exploration and exploitation is 
needed so that a method can achieve good perfor‑
mance. However, obtain such a balance is not re‑
solved. No method claims that such a balance has 
been achieved. This balancing is a hyper optimiza‑
tion problem that depends on many factors, such as 
the working mechanism of a method, its parameter 
settings, controlling of these parameters. Further‑
more, such balance may not universally exist, and it 
may depend on the interested problem.

Researchers do not aim to develop a single most 
successful method to solve all types of problems. 
They intend to propose more successful versions 
of the methods and more new methods based on 
untested phenomena in the nature. Furthermore, 

values of parameters of the algorithms affect the 
performance. Setting the right fine-tuned values is 
essential for better performance. Setting parameters 
is still an active research area.

4. CONCLUSIONS

Light-based optimization methods and literature 
reviews based on these algorithms were compiled 
for the first time in this study. The performances of 
these algorithms were tested using unconstrained 
benchmark functions and constrained real-world 
engineering problems. Light-based optimization al‑
gorithms were also compared with other intelligent 
search and optimization methods, such as GA and 
its variants. The success of light-based optimization 
algorithms was experimentally proven.

The performance of light-based optimization 
algorithms in constrained real-world engineering 
problems was evaluated. During these tests, welded 
beam problem and tension/compression spring de‑
sign problem were used. The performances of light-
based optimization algorithms were compared for 
the first time under equal conditions. In the tension/ 
compression spring design problem, RO outper‑
formed all other methods, including the OIO algo‑
rithm. However, in this problem, the OIO algorithm 
could not obtain better results than other methods. 
In this context, all the light-based optimization al‑
gorithms did not yield better results than the other 
artificial intelligence methods in the literature with‑
in the problem of the tension/compression spring 
design. In the welded beam problem, it was seen 
that the light-based optimization and search meth‑
ods better converged to the global minimum than 
the other methods. Another important consequence 
of this is that an artificial intelligence method that 
yields good results in a constrained real engineer‑
ing problem cannot be proven to yield good results 

Table 4. Optimum Results for Welded Beam

Method
Design variable and cost

x1 x2 x3 x4 fcost

RO 0.2037 3.5285 9.0042 0.2072 1.7353
OIO 0.1914 3.8049 9.1382 0.2052 1.7605

Approx 0.2444 6.2189 8.2915 0.2444 2.3815
David 0.2434 6.2552 8.2915 0.2444 2.3841

Simplex 0.2792 5.6256 7.7512 0.2796 2.5307
Random 0.4575 4.7313 5.0853 0.6600 4.1185

Table 5. Mean and Standard Deviation  
for Welded Beam

Method
Mean and standard deviation

fcost Std Dev
RO 1.9083 0.173744
OIO 2.0381 0.167309
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in all other constrained and unconstrained problems 
and functions.

To the best of our knowledge, there is not any 
light-based artificial intelligence optimization algo‑
rithm developed in the literature other than the RO 
and OIO algorithms. In terms of performance of 
light-based optimization algorithms, RO algorithm, 
when both unconstrained benchmark test functions 
result and constrained real-world engineering prob‑
lems tests are taken into consideration, usually con‑
verges better to the global solution. Light-based 
optimization algorithms are very new, and the ob‑
tained results are based on their classical main ver‑
sions. In future works, better results can be obtained 
by proposing new distributed, hybrid, adaptive, and 
parallel versions using optimized parameters. Cha‑
os theory and quantum computing features and ca‑
pabilities can also be built into these methods to im‑
prove performance.
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