Влияние рассеянного излучения на возможности наведения по лазерному пучку

*Г.А. КАЛОШИН¹, В.П. БУДАК², **С.А. ШИШКИН¹, В.В. ЖУКОВ³
¹Институт оптики атмосферы им. В.Е. Зуева СО РАН, Томск
² ФГБОУ ВО «НИУ «МЭИ»», Москва
³АО «НИИ «ЭКРАН», Самара
E-mail: gkaloshin@iao.ru*, shishkin_s@mail.ru**

Аннотация

Обсуждаются возможности дистанционного обнаружения непрерывного лазерного пучка, распространяющегося в рассеивающей континентальной и прибрежной атмосфере, при его регистрации во вне осевой зоны. В приближении однократного рассеяния проведены оценки энергетической яркости пучка в месте регистрации, которые сопоставляются с пороговыми характеристиками существующих фотоприёмников в видимой и ИК областях спектра. Показано, что пучок лазерного излучения надёжно регистрируется в диапазоне углов рассеяния (0–180) ° при метеорологической дальности видимости (5–20) км в ночных условиях. В сумерках при тех же условиях возможности обнаружения существенно снижаются.

Экспериментально показано (в полевых условиях) значительное увеличение контраста энергетической яркости пучка лазерного излучения при уменьшении его расходимости. В условиях сумерек наблюдается снижение контраста энергетической яркости пучков. Пучки с расходимостью в 2 ' и 4 'перестают быть различимыми при углах рассеяния (80–90)° и (60–70)° соответственно. При этом разница контрастов достигает 10 крат.

Ключевые слова: аэрозольное рассеяние, индикатриса, контраст, лазерное излучение, лазерный пучок, фотометр, континентальная и прибрежная атмосфера.

Введение

Многие приложения в зондировании, связи и наблюдении осуществляются активными и пассивными оптико-локационными станциями (ОЛС). В них используются относительно мощные источники лазерного излучения (ЛИ), которые имеют дальность распространения в несколько километров в самой динамичной части атмосферы – приземном слое воздуха. При этом желательно знать местоположение и направление пучка ЛИ. В работах [1-5] показано, что ЛИ обнаружимы из-за рассеяния аэрозолями, а пучок может отображаться с помощью подходящих фотоприёмных устройств (ФПУ). Из этих работ следует, что интенсивность рассеяния ЛИ примерно соответствует прогнозу, основанному на рассеянии Ми [6-9] для прибрежного и континентального аэрозолей. Известно, что концентрация аэрозоля широко варьируется в зависимости от региональных и местных погодных условий [10–13]. Так, повышенная влажность повышает концентрацию аэрозолей и, как правило, рассеяние ЛИ [14-18]. В типичных условиях (дымка, слабый туман и др.) даже на малой высоте рассеяние слабое и труднообнаружимое при наличии фона. Это накладывает особые требования,

38

с одной стороны, к характеристикам ФПУ: чувствительности, быстродействию и области спектральной чувствительности, а с другой, к информации об оптических свойствах атмосферы и, прежде всего, аэрозоля как основного компонента, влияющего на ослабление и рассеяние ЛИ в «окнах прозрачности» атмосферы [19, 20]. Несмотря на наличие разнообразных методик прогноза вариаций сигнала на входном зрачке ОЛС, существует необходимость дальнейшего совершенствования имеющихся методов и подходов и разработки новых методов дистанционного обнаружения ЛИ в реальных условиях эксплуатации. Это обусловлено как развитием источников ЛИ и ФПУ [21– 23], так и улучшением аэрозольных моделей приземной атмосферы [24–27].

Основные задачи данной работы – количественное изучение возможностей внеосевого обнаружения ЛИ и измерение контраста энергетической яркости (ЭЯ) ЛИ, в том числе при проведении измерений в полевых условиях.

Цель работы – изучение взаимосвязей аэрозольного рассеяния при оценках возможностей внеосевого обнаружения ЛИ в континентальных и прибрежных условиях при изменении параметров пучка, метеорологической дальности видимости (МДВ), времени суток и расстояний до источника ЛИ.

Работа включала теоретические оценки однократно рассеянного излучения на основе аэрозольной модели «*MaexPro*» [28, 29] и расчётов с использованием программ [30–33], а также экспериментальные оценки ЭЯ рассеянного ЛИ в полевых условиях [34].

1. Результаты расчётов

В качестве основной величины, обеспечивающей конкретную оценку возможностей внеосевого обнаружения лазерного пучка, выбрана ЭЯ рассеянного ЛИ в приземной атмосфере. Современные фотометры (спектрорадиометры) позволяют уверенно обнаруживать сверхслабые сигналы кремниевыми неохлаждаемыми фотодиодными приёмниками в спектральном диапазоне 0,35-1,1 мкм и фотоумножителями в спектральном диапазоне 0,35-0,93 мкм при порогах чувствительности на уровне 3σ (коэффициент запаса равен 6) $3 \cdot 10^{-10}$ и $3 \cdot 10^{-14}$ Вт/нм соответственно. Данные спектрорадиометры производства компании Instrument Systems [35] в спектральном диапазоне 0,2-5 мкм имеют пороговую чувствительность $10^{-6} - 10^{-7}$ лк и предел контрастности до 10⁶:1, что позволяет регистрировать фон безлунного звёздного неба, в 3 · 10⁻⁴ лк, или, например, свет от Сириуса, в 10⁻⁵ лк. Для охлаждаемых фотоумножителей в спектральном диапазоне 0,35-0,93 мкм с GaAs-фотокатодом эквивалентная мощность шума

Рис. 1. Схема приёма рассеянного лазерного излучения

равна 10^{-13} Вт/(см²·ср·нм), или чувствительность по яркости – порядка 10^{-3} кд/м².

В работе рассматривается модель внеосевого рассеяния ЛИ для оптимизации характеристик приёмника и прогнозирования эффективности его работы в прибрежных районах при перемещении оптической оси ФПУ перпендикулярно и вдоль оси пучка на горизонтальной трассе в ночных и сумеречных условиях при разной МДВ.

Схема численного эксперимента для определения дальности внеосевого обнаружения непрерывного ЛИ, проходящего через рассеивающую среду, показана на рис. 1. Гауссов пучок ЛИ с длиной волны λ , начальной мощностью P_0 и расходимостью θ по уровню 0,5 направлен горизонтально к поверхности Земли в направлении φ относительно ФПУ. На расстоянии D от источника ЛИ расположено ФПУ с углом зрения ω . Рассеянное ЛИ наблюдается под углом γ .

Под дальностью внеосевого обнаружения понимаются расстояния $D \, u \, d_2$, при которых для ЭЯ рассеянного в направлении ФПУ ЛИ L выполняется условие $L / L_n \ge 1$, где L_n – пороговая ЭЯ для конкретного ФПУ.

Расчёт *L* проводился в приближении однократного рассеяния, что оправдано для небольших оптических толщин при решении атмосферных задач [17]. При этом считалось, что молекулярное рассеяние мало.

L (в Вт/(м²·ср) в месте пересечения с осью поля зрения ФПУ рассчитывалась как

где $\sigma(\lambda)$ – спектральный коэффициент аэрозольного рассеяния, км⁻¹; λ – длина волны ЛИ, мкм; $\chi(\gamma)$ – аэрозольный коэффициент направленного светорассеяния, км⁻¹·ср⁻¹; γ – угол рассеяния; d_2 – расстояние от ФПУ до визируемой точки на оси пучка, м; E(r) – облучённость, которую лазерный пучок создаёт в данной точки, М.

E(r) определялась по формуле

$$E(r) = \frac{2P_0}{\pi r^2} \exp(-\sigma(\lambda) d_1 \cdot 10^{-3}) \exp\left(-2\frac{r^2}{r_{e}^2}\right),$$
 (2)

где P_0 – мощность ЛИ на входе в среду, Вт; d_1 – расстояние от лазера до визируемой точки, м; $r_{\theta} = r_0 + d_1 \text{tg}(\theta/2)$ – радиус пучка на уровне расходимости θ в плоскости визируемой точки, м; r_0 – радиус пучка на выходе апертуры, м; θ – расходимость пучка по уровню 0,5, рад; $R = d_2 \text{tg}(\omega/2)$ – расстояние поперёк пучка, ограниченное полем зрения $\Phi \Pi Y$; ω – угол поля зрения $\Phi \Pi Y$, град.

По уравнениям (1) и (2) были рассчитаны L для прибрежной дымки с МДВ $S_{\rm m}$ в 5 и 20 км при разной геометрии схемы приёма (D, φ) и углах рассеяния γ от 0 до 180°. Полученные значения сравнивались с пороговой чувствительностью по ЭЯ выбранных ФПУ (для оценки дальности внеосевого обнаружения). Были приняты следующие значения параметров пучка ЛИ: $P_0 = 1$ Вт; $\lambda = 0,52$ и 1,06 мкм; $\theta = 3'$; $r_0 = 2$ мм. Коэффициенты $\sigma(\lambda)$ и $\chi(\gamma)$ рассчитывались по данным модели «*MaexProw* [28, 29]. Так, при $\lambda = 0,52$ мкм и $S_{\rm m} = 5$ и 20 км $\sigma = 0,83$ и 0,75 км⁻¹ соответственно, а при $\lambda = 1,06$ мкм, соответственно, 0,21 и 0,11 км⁻¹. Выборочные значения коэффициентов $\chi(\gamma)$ (при $\gamma = 1, 3, 5, 45, 90$ и 135°) приведены в таблице.

Пороговая чувствительность ФПУ была выбрана по данным [35] с учётом перевода энергетических величин в световые через относительную спектральную световую эффективность $V(\lambda)$ при $\lambda = 0,52$ мкм. Значения $L_{\rm II}$ при $\lambda = 0,52$ мкм для ночных и сумеречных условий составляли 10^{-7} и 10^{-4} Вт/(м²·ср) соответственно, а при $\lambda = 1,06$ мкм, соответственно 10^{-9} и 10^{-6} Вт/(м²·ср). При этом угол ω составлял 0,3 град.

В качестве примера на рис. 2 и 3 приведены результаты расчёта *L* в зависимости от γ в видимом ($\lambda = 0,52$ мкм) и ближнем ИК ($\lambda = 1,06$ мкм) диапазонах спектра при ска-

(1)

 $L = \frac{10^{-3}}{4\pi} \frac{\chi(\gamma) \exp\left[-\sigma(\lambda)d_2 \cdot 10^{-3}\right]}{\sin\gamma} \int_{-R}^{R} E(r)dr,$

Рис. 2. Изменение энергетической яркости лазерного пучка L на $\lambda = 0,52$ мкм при $P_0 = 1$ Вт и $\theta = 3'$ в зависимости от угла рассеяния γ при сканировании оси поля зрения ФПУ вдоль оси пучка при разных дистанциях Dот излучателя при $S_m = 5$ км (a) и 20 км (6)

нировании оси $\Phi \Pi Y$ вдоль оси пучка при $S_m = 5$ и 20 км и разных значениях D.

Расчёты показывают, что возможности обнаружения рассеянного ЛИ в видимом диапазоне существенно выше, чем в ближнем ИК при всех γ . Это объясняется бо́льшей эффективностью рассеяния на частицах атмосферной дымки (частицах Ми) на более коротких λ .

Уровни $L_{\rm n}$ на рис. 2 и 3 обозначены линиями 1 и 2 для ночных и сумеречных условий соответственно. Из рисунков видно, что в ночных условиях при $S_{\rm m} = 5$ км пучок ЛИ будет обнаруживаться на дистанции D = 10 км при $\gamma = 45^{\circ}$. При $\gamma = 110-120^{\circ}$ (минимальные значения L) дальность обнаружения D при $S_{\rm m} = 5$ км снижается до 5 км, в то время как при $S_{\rm m} = 20$ км пучок ЛИ уверенно обнаруживается на D более 10 км. В сумерках при тех же γ возможности обнаружения существенно снижаются, до $D \approx 1$ км, как при $S_{\rm m}$ в 5, так и в 20 км.

2. Результаты полевых измерений

Для подтверждения результатов расчётов были проведены полевые измерения в ночных и сумеречных условиях на полигоне Института оптики атмосферы им. В.Е. Зуева СО РАН в августе 2015–2018 гг. ЭЯ фона L_{ϕ} при этом составляли 10^{-2} кд/м² (ночь) и 0,5 кд/м² (сумерки) соответственно. Во время измерений присутствовала облачность и луна находилась за горизонтом. МДВ изменялась в пределах 12–15 км.

2.1. Схема экспериментальной установки

Макет излучателя состоял (рис. 4) из полупроводникового лазера типа *DTL-313* ($\lambda = 0,527$ мкм, $P_0 = 117$ мВт, $\theta = 1$ мрад, $d_0 = 2$ мм) и телескопической системы коллимации пучков для регулировки θ . Для измерения *L* использовалось ФПУ компании *Konica Minolta* типа *LS-110* (диапазон измерений по яркости 0,01–999900 кд/м², $\omega = 1/3^{\circ}$) совместно с фотоаппаратом *Canon EOS6D* (разрешение 20 *Mpx* (мегапикселей), объектив ЕF (24–105) mm, *f*/4*L*). Оборудование располагалось на поворотной платформе для перемещения по азимуту и углу места. Данные измерений заносились в компьютер (ПК) и обрабатывались с помощью разработанных программ [36, 37].

Измерения проводились по схеме, приведённой на рис. 1. Коэффициент направленного светорассеяния γ регистрировался в диапазоне углов $\gamma = 0,5-179,5^{\circ}$ с шагом 5° при заданных D и φ . При этом в силу конструктивных особенностей ФПУ не достигал граничных значений γ (0 и 180°) на 0,5⁰. Пучок проходил на высоте около 2 м над поверхностью Земли. Перед началом измерений проводилась стандартная геодезическая разметка местности для определения параметров трассы распространения ЛИ и определения места установки ФПУ таким образом, чтобы их оптические оси лежали в одной плоскости и пересекались.

Структура лазерных пучков, которые использовались в измерениях, показана на рис. 5.

Рис. 4. Схема экспериментальной установки для измерения яркости рассеянного лазерного излучения

a)

б)

Рис. 5. Распределение яркости в поперечном сечении пучков лазерного излучения в виде 4 и 12 концентрических колец (фото 1 и 3 соответственно) и результаты фотометрирования этих же пучков (2 и 4)

Рис. 6. Изображение пучков лазерного излучения ($\lambda = 0,527$ мкм, $P_0 = 117$ мВт), вид сбоку, на приземной трассе при расходимости пучка $\theta = 2'$ (*a*) и 4' (6)

В последнее время вызывают интерес пучки ЛИ с кольцевой структурой распределение интенсивности, которая в поперечном сечении хорошо аппроксимируется функцией Гаусса. Из рис. 5 видно, что наружное кольцо обоих видов пучков имеет наибольшую яркость, которая спадает к центру пучка по закону, близкому к гауссову распределению. Основная мощность пучка сосредоточена в первых двух кольцах. На рис. 5 белый цвет соответствует максимальной интенсивности, а чёрный – нулевой интенсивности. Здесь распределение интенсивности в поперечном сечении пучков представлено в виде 4 и 12 концентрических колец с $\theta = 2$ и 4' соответственно.

Пример изображения пучков при фотографировании сбоку показан на рис. 6. При этом геометрия схемы приёма была следующая: D = 150 м, $\varphi = 2^{\circ}$, $\gamma = 45^{\circ}$.

2.2. Результаты измерений контраста яркости пучков ЛИ

Измеренная яркость пучков ЛИ в направлении, перпендикулярном их оси показана на рис. 7 при двух значениях угловых направлений приёма $\gamma = 45$ и 90°. На снимке пучков ЛИ (рис. 6) ось приёмника располагалась примерно в середине изображения на оси соответствующего пучка.

Возможность наведения по пучку ЛИ оценивалась по величине яркостного контраста k, определяемого по выражению

$$k = (L_0 - L_{\phi}) / L_{\phi}, \qquad (3)$$

где L_0 – яркость рассеянного пучка ЛИ; L_{ϕ} – яркость фона. При $k \rightarrow 1$ пучок ЛИ наблюдается предельно контрастно, а случай $k \rightarrow 0$ соответствует полному рассеянию пучка ЛИ. Для определения k пучка ЛИ значение яркости пучка L_0 было выбрано на уровне $0,5 \cdot L_{max}$, показанном на рис. 7 горизонтальными линиями 1 (при $\theta = 2'$) и 2 (при $\theta = 4'$). При $\gamma = 45^{\circ}$ рассчитанные по (3) значения k составили 0,51 и 0,33 для пучков ЛИ с $\theta = 2$ и 4' соответственно. При $\gamma =$ 90° k = 0,33 для пучка ЛИ с $\theta = 2'$ и k = 0,12 для пучка ЛИ с $\theta = 4'$. Таким образом, рис. 7 иллюстрирует значительное снижение k пучка при увеличении θ .

Для оценки возможностей обнаружения пучков ЛИ были проведены несколько серий измерений k пучка при разных γ в зависимости от фоновых условий наблюдения. Измеренная при этом яркость фона L_{ϕ} составляла порядка 10^{-2} и 0,5 кд/м² для ночных и сумеречных условий соответственно. При этом выбранная схема приёма была следующей: D = 1200 м, $\varphi = 5^{\circ}$, $\gamma = 5 - 135^{\circ}$.

Изменение *k* пучков ЛИ с $\theta = 2$ и 4' показано на рис. 8. Горизонтальной линией здесь обозначен уровень порогового яркостного контраста k_n , выбранный равным 0,02, согласно рекомендациям [38, 39] для приближённых вычислений.

Таблица

Значения (выборочные) коэффициентов $\chi(\gamma)$, принятые для расчёта

S _m , км	λ ЛИ, мкм	χ(γ), км ⁻¹ ·cp ⁻¹					
		$\gamma = 1^{\circ}$	$\gamma = 3^{\circ}$	$\gamma = 5^{\circ}$	$\gamma = 45^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 135^{\circ}$
5	0,52	20	3,7	1,2	0,032	0,0038	0,0029
	1,06	8,1	6,2	3,8	0,087	0,0098	0,0092
20	0,52	6,7	4,5	3,0	0,13	0,026	0,025
	1,06	3,5	3,3	3,0	0,22	0,027	0,017

Рис. 8. Изменение яркостного контраста k лазерного пучка (λ = 0,527 мкм, P_0 = 117 мВт) с расходимостью θ = 2' (кривые 1) и 4' (кривые 2) для ночных и сумеречных условий при угловом перемещении оси поля зрения фотометра вдоль оси пучка

3. Обсуждения полученных результатов

Результаты показывают (рис. 7), что с ростом θ наблюдается существенное уменьшение k пучков ЛИ. Это связано с увеличением фона от многократного рассеяния самого пучка. Кроме того, из рис. 8 следует, что k пучков ЛИ в ночных условиях существенно выше $k_{\rm n}$ во всём диапазоне углов γ , что говорит об их надёжной идентификации. Особенно контрастными являются начальные участки пучков, вплоть до углов $\gamma = 15-20^{\circ}$, которые у обоих пучков также зрительно воспринимались одинаковыми. С увеличением углов γ более контрастно наблюдался пучок с $\theta = 2'$, причём его k был почти в 3–5 раз больше, чем у пучка с $\theta = 4'$.

В условиях сумерек наблюдается существенное снижение k обоих пучков. Пучок с $\theta = 2'$ перестаёт быть различимым при $\gamma = 80-90^{\circ}$, а пучок с $\theta = 4'$ при $\gamma = 60-70^{\circ}$. При этом разница k достигает 10 крат.

4. Выводы

Результаты расчётов и полевых измерений показывают, что для выбранных типов пучков ЛИ наблюдается сильная зависимость их k от θ и S_m .

Показано, что ЛИ надёжно регистрируется в диапазоне углов $\gamma = 0-180^{\circ}$ при $S_{\rm m} = 5-20$ км в ночных и сумеречных условиях при яркостях фона 10^{-2} и 0,5 кд/м 2 соответственно.

Экспериментально в полевых условиях показано существенное увеличение k пучка ЛИ при уменьшении его θ . В условиях сумерек наблюдается существенное снижение k обоих пучков. Пучок с $\theta = 2'$ перестаёт быть различимым при $\gamma = 80$ –90°, а пучок с $\theta = 4'$ при $\gamma = 60$ –70°. При этом разница k достигает 10 крат.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации.

СПИСОК ЛИТЕРАТУРЫ

1. *Roy N., Reid F.* Off–axis laser detection model in coastal areas // Optical Engineering. – 2008. – Vol. 47. – P. 1–11.

2. Cariou J.P. Off-axis detection of pulsed laser beams: simulation and measurements in the lower atmosphere // Proceedings of SPIE. -2003. - Vol. 5086. - P. 129–138.

3. *Michulec J.K., Schleijpen R.* Influence of aerosols on off-axis laser detection capabilities // Proceedings of SPIE. – 2009. – Vol. 7463. – P. 1–12.

4. *DeGrassie John S.* Modeling off-axis laser scattering: effects from aerosol distributions // Proceedings of SPIE. – 2012. – Vol. 8517 (85170V).

5. *Mendoza–Yero O*. Effects of off–axis laser beam propagation on beam parameters // Proceedings of SPIE. – 2014. – Vol. 5622.

6. *Kaloshin G.A., Piazzola J.* Influence of the large aerosol particles on the infrared propagation in coastal areas / Proceedings of 23rd International Laser Radar Conference. – 2006. – P. 429–432.

7. Kaloshin G.A., Piazzola J., Shishkin S. Numerical modeling of influence of meteorological parameters on aerosol extinction in the marine atmospheric surface layer / Proceedings of 16th International Conference on Nucleation and Atmospheric Aerosols (ICNAA). – 2004. – P. 352–354.

8. Kaloshin G.A. Modeling the Aerosol Extinction in Marine and Coastal Areas / IEEE Geoscience and Remote Sensing Letters. – 2020, april. URL: https://ieeexplore.ieee.org/document/9052468 (дата обращения: 20.06.2020); doi: 10.1109/LGRS.2020.2980866.

9. Калошин Г.А. Способ построения визуальной взлётно-посадочной системы с помощью вихревых лазерных пучков / Патент России № 2695044. 2018. Бюл. № 32.

10. *Gathman S.G.* Optical properties of the marine aerosol as predicted by the Navy aerosol model // Optical Engineering. – 1983. – Vol. 22, No. 1. – P. 57–62.

11. *Gathman S.G. J. van Eijk A.M. and Cohen L.H.* Characterizing large aerosols in the lowest levels of the marine atmosphere // Proceedings of SPIE. – 1998. – Vol. 3433. – P. 41–52.

12. Shettle E.P. Models of aerosols clouds and precipitation for atmospheric propagation studies // Proceedings of AGARD Conference: Atmospheric Propagation in the UV Visible IR and MM–Wave region and Related Systems Aspects. – 1989. – 454. – P. 15–1 – 15–13.

13. Weichel H. (ed.) Laser Beam Propagation in the Atmosphere. – SPIE Bellingham WA. – 28.09.1990.

14. *Зуев В.Е.* Распространение видимых и инфракрасных волн в атмосфере. – М: Советское радио. – 1970. – 496 с.

15. Зуев В.Е. Распространение лазерного излучения в атмосфере. – М: Радио и связь 1981. – 288 с.

16. Зуев В.Е., Креков Г.М. Оптические модели атмосферы. – Л.: Гидрометеоиздат, 1986. – 256 с.

17. Зуев В.Е., Кабанов М.В.: Савельев Б.А. Распространение лазерных пучков в рассеивающей среде // Applied Optics. – 1969. – Vol. 8, No. 1. – Р. 137–141.

18. Деймерджан Д. Рассеяние электромагнитного излучения сферическими полидисперсными частицами. – М.: Мир, 1971. – 290 с.

19. Jensen D.R., Gathman S.G., Zeisse C.R., Littfin K.M. EOPACE overview and initial accomplishment // Journal of Aerosol Science. – 1999. – Vol. 30, No. 1. – P. 53–54.

20. Jensen D.R., Gathman S.G., Zeisse C.R., Leeuw G., de Smith M.H., Frederickson P.A., Davidson K.L. Electrooptical Propagation Assessment in Coastal Environments (EOPACE): summary and accomplishments // Optical Engineering. – 2001. – Vol. 40, No. 8. – P. 1486–1498.

21. Kaloshin G.A., Gordienko A.I. Laser aids to navigation (methods) // IALA Bulletin. - 2003. - 3. - P. 46-51.

22. *Kaloshin G.A. Gordienko A.I.* Laser aids to navigation (technologies) // IALA Bulletin. – 2004. – No. 1. – P. 42–49.

23. Gordienko A.I. Kaloshin G.A. Laser leading beacons: summaries and perspectives /Proceedings of XV Conference IALA «Navigation and the Environment», 2002. – P. 150–158.

24. Jensen D.R. Gathman S.G. Zeisse C.R. and Littfin K.M. EOPACE (Electrooptical Propagation Assessment in Coastal Environments) Overview and Initial Accomplishments /Proceedings of Millennium Conference on Antennas and Propagation (AP2000). – Davos Switzerland, 2000.

25. *Nilsson B.A.* Meteorological influence on aerosol extinction in the 0.2–40 μ wavelength range // Applied Optics. – 1979. – Vol. 18. – P. 3457–3472.

26. *Nilsson B.A.* Model of the relation of IR aerosol extinction to weather parameters // Proceedings of SPIE: Infrared Technology XVI-II. -1992. - Vol. 1762. - P. 238–250.

27. *Lewis E.R., Schwartz S.E.* Sea salt aerosol production: Mechanisms methods measurements and models – a critical review. Geophys. Monograph. – Washington DC: AGU, 2004. – 413 p.

28. *Kaloshin G.A., Grishin I.A.* An aerosol model of the marine and coastal atmospheric surface layer // Atmosphere – Ocean. – 2011. – Vol. 49, No. 2. – P. 112–120.

29. Калошин Г.А. Развитие аэрозольной модели приземного слоя морской и прибрежной атмосферы. // Оптика атмосферы и океана. – 2018. – Т. 31. № 11. – С. 881–887.

30. Калошин Г.А., Шишкин С.А. Программно–технологический пакет Range для проведения расчётов распространения оптического излучения с учётом аэрозольного ослабления в приземном слое континентальной морской и прибрежной атмосферы / Свидетельство о государственной регистрации программы для ЭВМ от 03.08.2012 № 2012616944.

31. Калошин Г.А., Шишкин С.А. Программа для расчёта спектральных коэффициентов аэрозольного ослабления в приземном слое морской и прибрежной атмосферы MaexPro / Свидетельство о государственной регистрации программы для ЭВМ от 03.08.2012 № 2012616945.

32. Калошин Г.А., Шишкин С.А. Программа для расчёта комплексных показателей преломления вещества частиц морского и прибрежного аэрозоля MieCalc / Свидетельство о государственной регистрации программы для ЭВМ от 03.08.2012 № 2012616943. 33. Калошин Г.А., Шишкин С.А. Жуков В.В. Микрофизические и оптические характеристики морского и прибрежного аэрозоля / Свидетельство о государственной регистрации базы данных от 14.12.2015 № 2015621775.

34. *Kaloshin G.A., Shishkin S.A. Zhukov V.V.* Characteristics of scattered radiation in off-axis recording of laser radiation under field conditions // Proceedings of SPIE25th Intern. Symp. on Atmospheric and Ocean Optics: Atmospheric Physics. – 2019. – Vol. 11208. – P. 112081C.

35. Instrument Systems. URL: http://www.instrument systems.com/ (дата обращения: 20.06.2020).

36. Калошин Г.А., Шишкин С.А., Жуков В.В. Программа для управления и обработки данных спектрорадиометрических измерений рассеянного излучения лазерных пучков в атмосфере / Свидетельство о государственной регистрации программы для ЭВМ от 20.08.2015 № 2015618954.

37. Калошин Г.А., Шишкин С.А., Жуков В.В. Программа управления измерениями контраста яркости лазерных пучков в рассеивающих средах / Свидетельство о государственной регистрации программы для ЭВМ от 14.12.2015 № 2015663204.

38. Мешков В.В., Матвеев А.Б. Основы светотехники: Учеб. пособие для вузов: В 2-х ч. Ч. 2. Физиологическая оптика и колориметрия. – 2-е изд., перераб. и доп. –.М.: Энергоатомиздат 1989. – 432 с.

39. *Луизов А.В.* Глаз и свет. – Л.: Энергоатомиздат, ЛО, 1983. – 144 с.

Калошин Геннадий Александрович, кандидат физ.-мат. наук. Окончил в 1972 г. Томский государственный университет по специальности «Радиофизика и квантовая электроника». Ведущий научный сотрудник Института оптики атмосферы им. В.Е. Зуева СО РАН

Шишкин Сергей Александрович, инженер-конструктор. Окончил в 2000 г. Томский университет систем управления и радиоэлектроники по специальности «проектирование и конструирование радиоэлектронной аппаратуры». Ведущий инженер, заместитель начальника лаборатории АО «НИИ «Экран»

Жуков Владимир Валентинович, инженер. Окончил в 1987 г. Томский политехнический институт по специальности «прикладная математика и информатика». Программист в Томском политехническом университете