Электрические и излучательные характеристики лампы трансформаторного типа с разрядной трубкой диаметром 16,6 мм

В. А. ЛЕВЧЕНКО, О. А. ПОПОВ, С. А. СВИТНЕВ, П. В. СТАРШИНОВ I ФГБОУ ВПО «НИУ «МЭИ» и ООО ПК «ЛИТ», Москва

Аннотация

Проведены экспериментальные исследования электрических и излучательных характеристик лампы трансформаторного типа с замкнутой разрядной трубкой внутреннего диаметра 16,6 мм, работающей в смеси паров ртути (7 Торр) и инертных газов (0,1–1,0 Торр) на частоте 265 кГц при мощности плазмы разряда 180 Вт. Установлено, что максимальные значения энергетического КПД в линии ртути 254 нм и напряжённости ВЧ электрического поля в плазме и минимальные значения разрядного тока лампы соответствуют давлению инертных газов 0,3 Торр. Расчёты разрядного тока по трансформаторной модели индукционного разряда показали хорошее согласие с результатами эксперимента.

Ключевые слова: индукционный разряд, ртутная плазма НД, УФ излучение, ВЧ, напряжённость электрического поля.

1. Введение

Индукционные ртутные разрядные лампы НД трансформаторного типа (ЛТТ) являются одним из перспективных источников видимого и УФ излучений [1-3]. Благодаря отсутствию внутренних электродов ЛТТ могут работать при относительно низких давлениях инертного газа, 0,05-0,5 Торр, соответствующих максимально эффективной генерации ртутного излучения в линиях 185 и 254 нм [4]. Это открывает возможность создания самых разных по мощности эффективных источников УФ резонансного излучения, используемых для очистки воды и воздуха. Большинство исследований по ЛТТ касались создания долговечных (60–100 тыс. ч) и энергоэффективных (≥100 лм/Вт) люминесцентных ЛТТ с низкой мощностной нагрузкой на стенки стеклянной трубки, покрытых люминофором, что требовало относительно большого диаметра разрядных трубок, 50-70 мм [2, 4, 5]. Исследований же по ЛТТ с разрядными трубками меньшего диаметра, 15-25 мм, более эффективных в плане создания бактерицидных ламп, до представляемой ниже работы авторов практически не было.

2. Экспериментальная установка и методика измерений

Индукционный разряд зажигался на частоте f = 265 к Γ ц в замкнутой кварцевой трубке наружного и внутреннего диаметров 19 и 16,6 мм соответственно. Длина лампы L = 492 мм и длина плазменного витка, определяемая как длина оси разрядной трубки, $\Lambda_{n\pi}$ = 815 мм. ВЧ индуктор представлял собой два параллельно соединённых коль-

цевых ферромагнитных сердечника (магнитопровода) сечением $2\ cm^2$ каждый, симметрично размещённых на замкнутой разрядной трубке. Каждая из двух, соединённых параллельно катушек индуктивности (каждая по 16 витков) охватывала «свой» магнитопровод. Давление паров ртути в разрядной трубке поддерживалось оптимальным (по максимуму энергетического КПД разрядной части лампы в линии $254\ hm\ \eta_{e,254}$), $0,006-0,008\ Topp$ температурой ртутно-индиевой амальгамы, размещённой на стенке трубки. В качестве буферного газа использовались криптон, аргон и смеси аргона с неоном (30%Ne+70%Ar) и пеннинговская смесь 60%Ne+40%Ar); давление буферного газа (или смеси газов) $p_{u.e.}$ варьировалось от $0,1\ до\ 1,0\ Topp.$ Измерения проводились при постоянной мощности плазмы $P_{ng}=180\ BT.$

Схема установки приведена на рис. 1. Электрические измерения выполнялось с помощью цифрового осциллографа *Tektronix TDS640A*. Для измерения удельного потока излучения в линии ртути 254 нм использовался радиометр *IL1700* компании *InternationalLightTechnologies* с фотометрической головкой *SED240/W* с косинусной угловой характеристикой. Лампа размещалась в чёрном заземлённом металлическом коробе на неподвижной стойке с чёрным экраном в плоскости разрядной трубки. В коробе имелась щель шириной 20 мм для измерения вышеуказанного удельного потока излучения лампы [3]. Расстояние от приёмника излучения (ПИ) до щели составляло 150 см и от щели до лампы – 10 см. Размеры выбирались исходя из того, что на поверхности ПИ должна обеспечиваться достаточная для точных измерений облучённость,

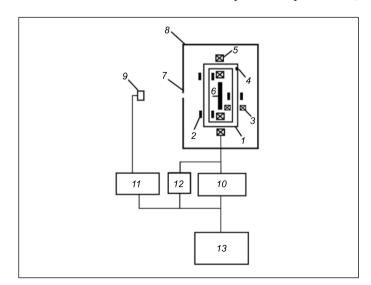


Рис. 1. Схема экспериментальной установки: 1 — разрядная трубка, 2 — держатель, 3 — трансформатор тока, 4 — амальгама, 5 — индуктор, 6 — экран, 7 — щель, 8 — короб, 9 — приёмник излучения, 10 — ЭПРА, 11 — радиометр, 12 — цифровой

«СВЕТОТЕХНИКА», 2016, № 1

осциллограф, 13 - ПК

¹ E-mail: blitzzz-z@ya.ru

а выделяемый щелью участок лампы можно считать точечным источником.

Формула для расчёта полного потока излучения лампы в линии 254 нм Φ_{e} 254 имеет вид [3]

$$\Phi_{e,254} = \frac{\pi^2 \cdot h \cdot d \cdot i \cdot L}{\Lambda \cdot S},$$

где L – длина лампы; h – расстояние от лампы до датчика; i – фототок ПИ; S – интегральная чувствительность датчика; d – расстояние от щели до ПИ; Δ – ширина щели.

Измерение разрядного тока I_{nn} осуществлялось с помощью трансформатора тока. Для измерения ВЧ напряжения на плазменном витке U_{nn} использовался виток провода, размещённый по внешнему периметру замкнутой разрядной трубки.

3. Результаты экспериментальных исследований

3.1. Напряжённость ВЧ электрического поля плазмы

На рис. 2 приведена зависимость напряжённости ВЧ электрического поля в плазменном витке E от давления аргона и давления смеси 30%Ne+70%Ar. Расчёт E проводился по формуле

$$E = U_{nn} / \Delta_{nn}$$

где $\Delta_{nn} = 81,5$ см — длина плазменного витка.

С повышением $p_{u,z}$ E вначала растёт, а затем падает, обнаруживая максимум при $p_{u,z}$ =0,2–0,3 Торр. Такая зависимость E от $p_{u,z}$ характерна для низкотемпературной плазмы НД в инертных газах и парах ртути и соответствует известному соотношению, связывающему E с температурой электронов T_e , $p_{u,z}$ и долей энергии, теряемой средним электроном между двумя соударениями (упругими и неупругими) χ [6]:

$$E = 1.5 \cdot T_e \cdot \chi^{1/2} / \lambda_e$$

где λ_e — средняя длина пробега электрона.

С одной стороны, повышение $p_{u.z}$ уменьшает λ_e , что повышает E, а, с другой, рост $p_{u.z}$ ведёт к снижению T_e и, следовательно, E. И на всё это накладывается сложная зависимость χ от $p_{u.z}$. В результате зависимость E от $p_{u.z}$ имеет максимум, положение которого с увеличением атомного веса инертного газа сдвигается в сторону низких $p_{u.z}$, и это увеличение снижает E (рис. 2). Так, в ЛТТ со смесью паров ртути с криптоном при $p_{u.z}$ 1,0 и 0,5 Торр E, соответственно, равнялась 0,48 и 0,55 В/см.

Полученные результаты хорошо согласуются с экспериментальными данными для трубчатых ламп с такими же конструктивными параметрами, но с внутренними электродами и работающих на частоте 50 Гц [7].

3.2. Ток плазменного витка

Разрядный ток лампы (ток плазменного витка) I_{nn} измерялся с помощью трансформатора тока, а также рассчитывался с помощью аналитических соотношений, полу-

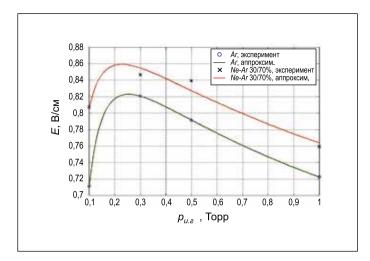


Рис. 2. Зависимость напряжённости ВЧ электрического поля плазмы E от давления инертного газа $p_{u,z}$ при частоте разрядного тока $f=265~\mathrm{kFL}$ и поглощаемой плазмой мощности $P_{n,r}=180~\mathrm{BT}$

ченных в рамках трансформаторной модели индукционного разряда, как [4, 5]

$$I_{n,n} = \frac{P_{\Lambda} - P_{un\theta}}{U_{n,n} \cos \varphi},\tag{1}$$

$$U_{n\pi} = nU_{un\partial}/N, \tag{2}$$

$$\cos \varphi = \frac{R_{nn}}{Z_{...}},\tag{3}$$

где $R_{n,n}$ и $Z_{n,n}$ – активное и полное сопротивление плазмы соответственно:

$$Z_{na} = \sqrt{R_{na}^2 + (\omega L_{na})^2},$$
 (4)

где $\omega = 2\pi f$ — круговая частота тока, L_{nn} — индуктивность плазменного витка.

При этом Z_{n_n} можно находить по измеренным U_{n_n} и P_{n_n} :

$$Z_{nn} = \frac{U_{nn}^{2}}{P_{nn}} = \frac{U_{nn}^{2}}{P_{n} - P_{un\partial}}.$$
 (5)

 L_{nn} можно находить, зная взаимную индуктивность ВЧ индуктора и плазменного витка M:

$$M = k\sqrt{L_{un\partial}L_{na}},\tag{6}$$

где $k\approx 1$ — коэффициент связи индуктора с плазменным витком, $L_{u\!H\!\partial}=500\cdot 10^{-6}$ Гн — индуктивность индуктора, а M определяется по формуле [4]

42 «СВЕТОТЕХНИКА», 2016, № 1

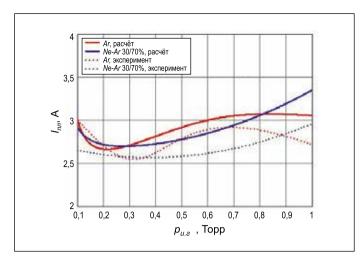


Рис. 3. Зависимости разрядного тока I_{nn} от давления инертного газа p_{us} . Параметры лампы – согласно рис. 2

$$M = \frac{U_{nn}}{I_{nuo}\omega},\tag{7}$$

где I_{und} – ток в индукторе. Из (6) и (7) следует

$$L_{n,n} = \frac{U_{n,n}^2}{\left(I_{un\partial}\omega\right)^2 L_{un\partial}},\tag{8}$$

а из (1)—(8) — расчётная формула для I_{nn} , где все параметры лампы в правой части определяются экспериментально:

$$I_{n,n} = \frac{1}{\frac{nU_{und}}{N} \sqrt{\left(\frac{1}{P_n - P_{und}}\right)^2 + \left(\frac{1}{I_{und}^2 \omega L_{und}}\right)^2}}$$
(9)

На рис. З приведены результаты измерений и расчёта по выражению (9) зависимостей I_{n_n} от давления $p_{u.z}$ для двух буферных газов: аргона и смеси 30%Ne + 70%Ar. Из рис. 2 и 3 видно, что зависимости I_{n_n} от $p_{u.z}$ коррелируют с соответствующими зависимостями E от $p_{u.z}$ и имеют минимумы при тех $p_{u.z}$, на которые приходится максимум зависимости E от $p_{u.z}$. Рассчитанные по выражению (9) зависимости I_{n_n} от $p_{u.z}$ находятся в хорошем согласии с экспериментальными зависимостями, полученными в настоящей работе: разница между измеренными и расчётными значениями I_{n_n} не превышает 15%.

3.3. Энергетический КПД разрядной части лампы в линии 254 нм

На рис. 4. представлены экспериментальные зависимости $\eta_{e,254}$ (= $\Phi_{e,254}/P_{nn}$) от $p_{u.z}$ аргона, криптона и смеси аргона с неоном. Видно, что максимум $\eta_{e,254}$ приходится на $p_{u.z}$ 0,3 Торр, при котором E имеет максимум. Отметим, что в области более высоких $p_{u.z}$ $\eta_{e,254}$ оказывается выше при более «лёгком» наполнении. Однако при более низких $p_{u.z}$ разница в $\eta_{e,254}$ между чистым аргоном и смесью 30% Ne+70% Ar практически не ощутима. К сожалению, из-

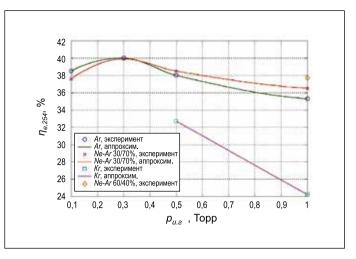


Рис. 4. Зависимость энергетического КПД разрядной части лампы в линии 254 нм $\eta_{e,254}$ от давления инертного газа $p_{u,z}$. Параметры лампы – согласно рис. 2

лучательные и электрические характеристики индукционного разряда с более лёгким наполнением 60% Ne+40% Ar были получены лишь при $p_{u,z}$ в 1 Торр. При более низких $p_{u,z}$ индукционный разряд не зажигался из-за чрезмерно высоких напряжённостей электрического поля, требуемых для зажигания разряда, что характерно для «лёгких» газов с высоким потенциалом ионизации [6].

Из рис. 4 следует, что при низких $p_{u.z}$, 0,2–0,3 Торр, $\eta_{e,254}$ при $\Delta_{nn}=815$ мм достигает 40%. Как было показано в [4], увеличение Δ_{nn} ведёт к повышению $\eta_{e,254}$ из-за снижения плотности плазмы и частоты тушащих соударений резонансно-возбуждённых атомов ртути с электронами плазмы.

Выводы

- $-\eta_{e,254}$ ртутных ЛТТ НД с инертным газом (или со смесью инертных газов) при давлении 0,1–0,5 Торр и рабочем токе 2,5–3,0 А достигает высоких значений: до 40%.
- $\eta_{e,254}$ и E у этих ламп немонотонно зависят от $p_{u.e}$ с максимумом при $p_{u.e}$ ≈ 0,3 Topp. ...
- Рассчитанная по трансформаторной модели индукционного разряда зависимость I_{nn} от $p_{u.z.}$ хорошо согласуется с соответствующей экспериментальной зависимостью.
- Результаты расчётов E хорошо согласуются с экспериментальными значениями этой величины, полученными другими авторами для положительного столба лампаналогов с внутренними электродами, но с такими же прочими конструктивными параметрами и при тех же разрядных токах.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ультрафиолетовая технология в современном мире: Коллективная монография / Под ред. Ф.В. Карамзинова, С.В. Костюченко, Н.Н. Кудрявцева, С.В. Храменкова. Долгопрудный: ИД «Интеллект», 2012. 391 с.
- 2. Исупов М. В., Кротов С. В., Литвинцев А.Ю, Уланов И.М. Индукционная ультрафиолетовая лампа // Светотехника. 2007. № 5. С. 37—40.
- 3. Левченко В.А., Попов О.А., Свитнев С.А., Старшинов П.В. Экспериментальные исследования электрических и оп-

«СВЕТОТЕХНИКА», 2016, № 1

тических характеристик безэлектродной УФ лампы трансформаторного типа // Светотехника. — 2014. — № 6. — С. 39—43.

- 4. *Попов О.А.* Исследование и разработка индукционных люминесцентных источников света на частотах $100-15000 \ \kappa\Gamma \mu/A$ Автореф. дис... д-ра. техн. наук.— М.: Б.и., $2011.-41 \ c.$
- 5. Исупов М. В., Федосеев А. В., Сухинин Г. И., Уланов И. М. Экспериментальное и теоретическое исследование низкочастотного индукционного разряда трансформаторного типа // Теплофизика и аэромеханика. 2014. Т. 21, № 5. С. 681—692.
- 6. *Рохлин Г.Н.* Разрядные источники света. М.: Энергоатомизлат. 1991. 720 с.
- 7. Весельницкий И.М. Определение оптимальных параметров и некоторые вопросы конструирования люминесцентных ламп повышенной мощности / Автореф. дис. ... к-та. техн. наук. М.: Б.и., 1966.-20 с.

Левченко Владимир Александрович, физик. Окончил МФТИ. Аспирант ФГБОУ ВПО «МФТИ ГУ»

Попов Олег Алексеевич, доктор техн. наук. Окончил в 1965 г. МЭИ. Профессор кафедры «Светотехника» ФГБОУ ВПО «НИУ «МЭИ»

Свитнев Сергей Александрович, кандидат техн. наук. Окончил в 2009 г. МЭИ (ТУ). Ведущий инженер ЗАО ПК «ЛИТ»

Старшинов Павел Валерьевич, магистр технических наук. Окончил в 2015 г. кафедру «Светотехника» ФГОУ ВПО «НИУ «МЭИ». Аспирант этой кафедры

Архитектурное освещение – в дар

Светотехнический холдинг *BL GROUP* сдал очередной проект, выполненный полностью на оборудовании *GALAD* и *OPORA ENGINEERING*: архитектурно-художественное освещение храма – в дар славным жителям города-героя Тула.

Для реализации проекта были использованы светильники и прожекторы *GALAD* серий ГО17–70–01, ИО-500 и ЖО07 и кронштейны *OPORA ENGINEERING*.

www.galad.ru 18.01.2016

BL GROUP: о диверсификации бизнеса в Азии

1 февраля этого года в городе Колката (б. Калькутта), Индия, представители компании BL Trade India Private Limited подписали рамочное соглашение с государственной компанией BRIDGE & ROOF COMPANY (INDIA) LIMITED.

многопрофильным холдингом, осуществляющим широкий спектр строительно-монтажных работ на всей территории Индии и за рубежом. (Холдинг В&Р имеет большой опыт и компетенции в сфере гражданского строительства и строительства железных дорог и в настоящий момент находится в процессе расширения бизнеса и регионов своего присутствия.) В целях решения этой масштабной задачи В&Р и планирует привлечь компанию BL Trade India, представляющую на индийском рынке крупнейший в России и странах СНГ светотехнический холдинг BL Group, для совместной реализации проектов в сфере городского благоустройства и модернизации всех видов освещения, включая наружное и внутреннее (промышленное, офисное и жилищно-бытовое). Предполагается также совместное участие в тендерах на строительство и модернизацию объектов освещения в Индии и за рубежом.

В истории *B&R* это первое подобное соглашение, подписанное с коммерческой организацией, имеющей в уставном капитале долю иностранного участия.

www.bl-g.ru 02.02.16