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ABSTRACT

The article reviews calculation of total light dis-
tribution of several light sources (LS), which are 
differently oriented in space with  their  locations 
conventionally 1 being the same. It is proposed that 
luminous intensity curves (photometric body) of 
LSs are described in IESNA format (or in the format 
of tables, which is basically the same). Two meth-
ods of solving the problem are proposed. The first 
one is related to preliminary trigonometric interpo-
lation of luminous intensity curves for each LS per-
formed by means of discrete Fourier transformation 
(DFT). The second one is based on piecewise-lin-
ear interpolation of this curves using Delaunay tri-
angulation. Both methods may be implemented by 
means of popular mathematic software (such as 
Wolfram Mathematica or Octave) and their applica-
bility is confirmed experimentally.

Keywords: luminous intensity angular distri-
bution, total luminous intensity distribution, pho-
tometric data, trigonometric interpolation, discrete 
Fourier transformation, piecewise-linear interpola-
tion, Delaunay triangulation, coordinate system ro-
tation, coordinate transformation

1. INTRODUCTION

Recently, the interest in the idea of design of 
lighting devices (LD) with units or tens of light 

1 Conventionally concentrated at a large distance from a 
photoelectric receiver

emitting diodes (LED) or LED modules with sec-
ondary optic devices which are differently orient-
ed in space has become evident in scientific publi-
cations [1–4]. Such approach has two advantages. 
First, it allows us to create an LD with a photomet-
ric body (PB) of any complexity using secondary 
optics with simple geometry. Second, by providing 
capability of rotation of specific LEDs (LED mod-
ules) in the structure of a LED based LD, it is pos-
sible to optimise its luminous intensity distribution 
depending on lighting conditions.

However, over the last decade, the range of sec-
ondary optics for LED based outdoor lighting lu-
minaires has significantly increased, therefore, the 
said approach to development of luminaires of this 
category, in point of fact, has lost its necessity. At 
the same time, it is our opinion that it is still neces-
sary, for instance, for development of crossbar lumi-
naires for railroad lighting and lighting of produc-
tion premises as well as luminaires for architectural 
lighting of buildings and structures. According-
ly, the studies for calculation of total angular dis-
tribution of luminous intensity (spatial light distri-
bution) of a system of differently oriented LSs with 
known PB (or, which is the same, luminous intensi-
ty curves) are still necessary.

Solution of the problem is significantly compli-
cated by the fact that PBs of initial LSs are three-di-
mensional. Even one of the recent studies on math-
ematical modelling of LED modules [5] reviews 
the dependence of light distribution on one vecto-
rial angle, i.e., in fact, a two-dimensional problem 
is solved.
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Nowadays, there is a method developed by 
S.G. Ashurkov and A.A. Bartsev [1] which allows 
us to solve a three-dimensional problem provided 
the initial PBs of LSs are axially symmetric. This 
article proposes two ways of solving this problem 
but without the said limitation, i.e. with non-sym-
metric initial  PBs of LSs.

2. STATEMENT OF THE PROBLEM 
OF CALCULATION OF TOTAL LIGHT 
DISTRIBUTION

It is known that PB of a point LS is a function 
( )I e  expressing dependence of the values of lumi-

nous intensity I in direction  e . The latter may be de-
fined by two angles in one of the systems:  ( ), ,αA  
( ),βB  or ( ),γC  [6]. In terms of mathematics, PB 
is a surface in a spherical coordinate system where 
I acts as a radius and angular coordinates depend on 
selection of the photometric system.

Usually PB is found by measurement data of a 
goniophotometer output in IESNA format [7]: in 
point of fact, in the form of a table where the values 
of angular coordinates are given with a specific in-
crement and the values of luminous intensity corre-
spond with each pair of such coordinate values.

Let us designate angular coordinates in a given 
spherical system as Θ and Ф (Fig. 1), Θ∈[0°, 180°] 
and Ф∈[0°, 360°] and let us perform measurements 
of the first angle with increment of ΔΘ and of the 
second angle with increment of ΔФ. Introducing the 
following designations:

k = ∆kΘ Θ , l = ∆lÔ Ô , (1)

where k = 0–NΘ, l = 0–NФ, NΘ = 180°/ΔΘ and NФ = 
360°/ΔФ, we will get that the following values of 
luminous intensity are known

kl k l( , ).=i I ÔΘ  (2)

Then let us consider several LSs located at one 
point with PB of each one known and expressed by 
(1) and (2). All PBs are described in the same pho-
tometry system, for instance, ( ),γC , with the role of 
γ angle is played by Θ and the role of Ф is played by 
C. (It is evident to consider that measurement incre-
ments ΔΘ and ΔФ are common for all LSs though 
this consideration is not crucial.)

The LSs are differently oriented in space and 
light distribution of each of them is described in its 

own coordinate system rigidly bound to data of a 
specific LS. At the same time, relative positions of 
LSs are known, i.e. the sequence of rotations allow-
ing own coordinate systems to combine is known.

The problem is as follows: total light distribution 
of the above described conventionally point LSs 
should be found.

Due to misalignment of their own coordinate 
systems, it is impossible to directly sum up the val-
ues of ikl of different LSs in relevant nodes of the 
mesh. It is necessary to select some common coor-
dinate system, to recalculate the ( )I e  functions for 
each LS in it, and only then to sum up. To reduce 
calculations, the own coordinate system of one of 
the LSs may be selected as the common system or 
some other one may be selected.

Below, two methods of solving the stated prob-
lem are presented and the experimental set, by 
means of which the input data for verification of 
theoretical computations was performed and the 
methods were compared, is described.

3. USE OF TRIGONOMETRIC 
INTERPOLATION

Let us know the analytic expression for each LS:

j j( , ),=I I ÔΘ  j = 1–N, (3)

where N is total number of LSs, the j index is used 
for their numbering, and the Θ and Ф angles corre-
spond with the own coordinate system of the j-th 
LS.

As the transformation formulae combining own 
coordinate systems of different LSs are known, we 
may find the dependence between the angular coor-
dinates in the own system and its coordinates Θ and 
φ in the common system (where PBs of LSs will be 

Fig. 1. Angular 
coordinates in a 
spherical system
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summed up). The said dependence will have the fol-
lowing form for the j-th LS

j( , ),θ ϕ= TΘ  j( , ).θ ϕ= FÔ  (4)

According to expressions (3) and (4), total light 
distribution of N LSs in the said common coordinate 
system will be expressed as

1 1 1

N N N

( , ) ( ( , ), ( , )) ...
... ( ( , ), ( , )).

θ ϕ θ ϕ θ ϕ
θ ϕ θ ϕ

= +
+

I I T F
I T F  (5)

The said approach is detailed in [8] and in this 
work, model examples of its application are built.

To implement the said approach, it is necessary 
to recover the functions (3) by means of input data 
(1, 2).

Previous attempts to solve this problem are de-
scribed in [9]. PB was expanded in degree of cos θ. 
Disadvantages of such solution are taking of only 
one angular variable into account (i.e. transition 
from space to plane) and low number of summands 
in the expanding (just 4). In their recent work [5], 
the authors increased accuracy of such expanding 
by multiplying the number of summands and ad-
vancing the methods of coefficient definition in such 
sums, however, the problem of transition from plane 
to space was not solved by them.

Possible approaches to solve the said problem 
different in terms of accuracy and complexity are 
described in [3, 10]. When interpolating photomet-
ric data, it is necessary to take PB (3) argument pe-
riodicity into account: it is obvious that Θ period 
of function Ij should be equal to 180° and that of Ф 
should be equal to 360°. Therefore, it is reasonable 

to calculate these functions in the form of double 
trigonometric series by Θ and Ф.

The data set in the form of equations (1,2) is fi-
nite, therefore, substantially the case in hand is trig-
onometric polynomial with (NΘ + 1) NФ summands; 
the coefficients of  these polynomials are subject 
to definition:

mn

mn

( , ) cos ( cos( )

sin( )).

= +

+

∑ ∑
m n

I m a n

b n

Ô Ô

Ô

Θ Θ
 (6)

In real photometric experiments, increments ΔΘ 
and ΔФ are small, therefore, the number of un-
known variables is rather high: for instance, with 
ΔΘ = 1° and ΔФ = 5°, it is equal to 13,032. That 
is why this brings up  the question of  the fastest 
and the most accurate method of trigonometric 
interpolation.

As shown in [4], such method is the method of 
discrete Fourier transformation (DFT). In its sim-
plest variant, it allows to roughly recover the peri-
odic function by its known values. For array {xk} 
with period of N, DFT is defined by the formula

1

k
0

2exp( )π−

=

= −∑
N

n
k

nkX x i
N

;

then the continuous function
1

n
0

1 2( ) exp π−

=

 =   ∆∑
N

n

ntx t X i
N N t

is periodic, and {xk} are its values obtained at val-
ues of t taken with increment of ∆t  [11].

The said transformation generalised for the pe-
riodic function by two its variables should be ap-
plied to the data set (2) after which it is necessary 
to define the real part in the obtained expression and 
then to reduce the number of summands excluding 
all expressions with coefficients amn and bmn less 
than some previously defined value (it  is defined 
with consideration of the desired accuracy) out of 
the sum.

So, according to the first algorithm of calcula-
tion of total light distribution of several LSs based 
on the results of photometric experiments, it is nec-
essary to:

 Define light distribution (3) of each LS in 
its own coordinate system applying DFT to data 
(1)–(2);

 Define concretely the transformations (4) re-
lating angular variables in own coordinate systems 

Fig. 2. Distortion 
of a regular mesh 
after 60° rotation 
around the Oy 
axis
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of LSs and in the common one to each other know-
ing relative positions of LSs;

 Calculate total luminous intensity distributions 
(common PB) in the common coordinate system us-
ing formula (5).

As a result of these actions, some formula (rath-
er cumbersome) expressing the required function 
( ),θ ϕI  will be obtained. It may seem inconvenient 

but it may be used to compile the table of values in 
the form (2) and to obtain the expression in the form 
(6) in the common coordinate system by it.

4. USE OF PIECEWISE-LINEAR 
INTERPOLATION

If PB (3) of each specific LS is not of interest, 
it is possible to try to avoid application of DFT. In 
this case, it is necessary to transfer to the common 
coordinate system from the beginning. The angu-
lar coordinates which the measured values of lumi-
nous intensity ikl correspond with after this transi-
tion may be defined by the system (4) defined by θ 
and φ:

j( , ),θ = t ÔΘ  j( , ),ϕ = f ÔΘ  j = 1–N. (7)

After substituting the values of Θk and Фl for 
all N LSs into (2) and (7), the table of values of lu-
minous intensity will be obtained in the following 
form

kl j k l( , ),=i I ÔΘ  (8)

where, according to (7), k j k l( , )θ = t ÔΘ  and 
l j k l( , )ϕ = f ÔΘ .
Since different functions tj and fj correspond with 

different LSs, after transformation of coordinates, 
the same angles Θk and Фl transform into different 
angles θk and φl. As a result, summing up of kli  re-
lated to different LSs is impossible right after rota-

tion. This problem did not arise using the analytic 
expressions (3) as they allow at any point to define 
Ij. Therefore, interpolation should be performed for 
all rotated LSs to define luminous intensity of dif-
ferent LSs at the same points.

pθ = ∆p Θ , q ,ϕ = ∆q Ô  (9)

where it is convenient to select corresponding incre-
ments of modification of angular variables in own 
coordinate systems and in the common one.

After rotation, the mesh Θk, Фl covering the in-
terval [0°; 180°]×[0°; 360°] ceases to be regular 
(Fig. 2).

Among the methods applicable to such meshes, 
piecewise-linear interpolation is the simplest one 
as it provides acceptable accuracy with sufficient 
number of mesh nodes. That is why this method is 
used hereafter. For its implementation, it is neces-
sary to perform triangulation of the region by the 
nodes of the obtained non-regular mesh, to define 
which of the triangles a specific point (9) gets into 
and to define Ij at this point knowing ikl at apexes of 
the triangle.

Absolute error of such interpolation is known 
[3]: within each triangle, it does not exceed M·h2/6 
where M is the largest value of second derivatives 
of the approximated function, h is the diameter of 

Fig. 4. Light sources 
used in the photometry 
experiment:
a –  LS1; b –  LS2

а) b)

Fig. 3. Non-full cov-
ering of the region 
[0°; 180°]× 
× [0°; 360°] by the 
non-regular mesh
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the escribed circle of the triangle. To reduce the er-
ror, h should be minimised. For this purpose, frag-
mentation of the said region is performed by means 
of Delaunay triangulation for minimisation of the 
error [12]. With such approach, none of the mesh 
nodes gets into the escribed circle of any triangle. 
Delaunay triangulation is distinctive with minimal 
sum of radii of the escribed circles of all triangles. 
Therefore, it is this approach which “averagely” 
provides the least error.

The advantage of this algorithm is that it is sup-
ported by many mathematical software packages, 
e.g. Mathematica [13] or Octave and does not re-
quire additional programming.

Ultimately, the second algorithm of calculation 
of total light distribution consists of the following 
steps:

 Transfer to the common coordinate system us-
ing formulae (7) and (8);

 Fragmenting of the computational region by 
means of Delaunay triangulation;

 Piecewise-linear interpolation of photometric 
data of all LS’s at the same points (9);

 Summing up of the values of luminous intensi-
ty of different LS’s at points (9).

The result of implementation of this algorithm 
is the table of total values of luminous intensities.

Implementation of this plan is related to a num-
ber of complications.

First, in the own coordinate systems, the results 
of photometry at Θ = 0° provide different values of 
luminous intensity at different Ф angles although, 
based on introduction of the spherical coordinate 
system, these values should be equal (Fig. 1). The 
similar statement is correct at Θ = 180°. This effect 
may be explained both by vibrations of the gonio-
photometer during measurements and by the fact 

that a luminaire may emit more or less light at dif-
ferent moments whereas photometric measurement 
is not performed in a moment.

When DFT is used, this phenomenon is not cru-
cial because regularity of positions of points (Θk, 
Фl) is of key importance; with piecewise-linear in-
terpolation it plays negative role. Consequently, the 
luminous intensity of each LS at one point has sev-
eral values, which makes interpolation impossible.

In order to solve this problem, the angle Θ = 0° 
is replaced by the angle ΔΘ/100 in photometric ta-
bles and the angle Θ = 180° is replaced by (180° –  
ΔΘ/100). As a result, different values of luminous 
intensity in the neighbourhood of Θ = 0° and 180° 
correspond to different (though closely positioned) 
points of space.

Second, while the initial mesh (1) in the own co-
ordinate system of a specific LS covers the whole 
region [0°; 180°]×[0°; 360°], the non-regular mesh 
in the common system obtained by means of trans-
formations (7) “backs out” of its edges (Fig. 3).

It is necessary to apply extrapolation instead of 
interpolation in regions not covered by the mesh, 
which leads to high errors.

In order to solve this problem, the initial (reg-
ular) mesh is widened and periodicity of functions 
Ij(Θ, Ф) by both variables and their parity relative 
to   are used. For instance, instead of the range 
[0°, 360°], the change range of angle Ф is consid-
ered: from 10ΔФ to 360° + 10ΔФ. Experience has 
proven that the described widening is sufficient for 
full covering of the region [0°; 180°]×[0°; 360°] 
by the non-regular mesh in the common coordinate 
system.

5. EXPERIMENT DESCRIPTION

The actual data required to perform compara-
tive analysis of the methods described above was 
obtained in the course of the goniophotometer ex-
periment. The LED based LSs used in the exper-
iment are presented in Fig. 4. The first one (LS1) 
is an oblique luminaire on a basis of a Feron 3602 
LB-24 MR16 LED lamp and the second one (LS2) 
is a LED lamp for accent lighting with axially sym-
metric light distribution with power comparable 
to that of LS1.

Luminous intensity was measured in standard 
conditions by means of a GO2000A goniophotom-
eter set containing: GO2000A goniometer (range of 
rotation in horizontal and vertical planes: ±180°, ac-

Fig. 5. Experimentally acquired photometric bodies  
of LS1 and LS2
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curacy of rotation angle setting: 0.1°); ID-1000 pho-
tometer based on a silicone photodiode adjusted for 
the function V(λ), accuracy class L; DPS1060 pow-
er supply unit.

All photometric data used in the further calcu-
lations is the arithmetic mean of the results of 5 
measurements.

Photometry was performed in the system (C, γ). 
Measurement interval was 5° for plane C and 1° for 
plane γ. The experimental PBs of each LS are pre-
sented in Fig. 5.

For measurement of total light distribution of the 
said sources (Fig. 6), LS1 was installed so that its 
geometrical axis was parallel to the axis of photom-
etry and orientation of LS2 was defined by the se-
quence of rotations of its geometrical axis: by 46° 
around the axis Ox and by 190° around the axis Oz. 
The common coordinate system was affixed to LS1.

5. COMPARISON OF CALCULATION 
METHODS

The comparison criteria of the calculation meth-
ods included simplicity of algorithm implementa-
tion, speed of their work, and accuracy.

Both methods were implemented by means of 
Wolfram Mathematica. The input photometric data 
was imported from the XLS file by means of em-
bedded functions of this mathematical software. 
Both DFT and piecewise-linear interpolation in a 
non-regular mesh are standard functions of this soft-
ware and Mathematica uses the Delaunay triangu-
lation for this interpolation. With consideration of 
these circumstances, complexity of programming 
using this software as basically the same for both 
methods.

The same may be said about their processing 
speed. The calculations were performed using a 
laptop with 2,400GHz Intel Core i7–4500U Has-
well CPU with 6Gb of RAM and powered by Win 
8.1×64.  In both cases,  the computation required 
(15–20) minutes and the total light distribution val-
ues calculated using both methods were rather close 
to those experimentally discovered (Fig. 7).

The accuracy criterion was relative error of cal-
culation of the values of total luminous intensity 
of two LSs as compared to its experimental (mea-
sured) values Ipq at points (9). Comparison of the 
calculated and experimental data was performed 
only within the region pq max / 2≥I I  where Imax is 
the largest measured value of total luminous inten-

sity. Such limitation allows us to ignore the regions 
which are not illuminated by the LSs [3]. On the 
other hand, it is these regions not interesting from 
technical point of view where relative error may 
drastically increase due to smallness of the mea-
sured values.

In the selected region, maximum value of error 
was less than 4 % for trigonometric interpolation 
and about 6.5 % for piecewise-linear interpolation.

6. CONCLUSION

The article proposes and analyses two methods 
of calculation of total luminous intensity distribu-
tion of several LSs with different spatial orientation 
with their positions being conventionally the same. 
The first one is related to trigonometric interpola-
tion of photometric data, the second one is related 
to its piecewise-linear interpolation.

During the numerical experiment with use of 
real photometric data, trigonometric interpolation 

Fig. 7. Total luminous intensity distribution obtained by 
means of trigonometric interpolation (the points stand 
for experimental data, the solid surface stands for the 

results of calculation)

Fig. 6. Total photometric bodies  acquired experimentally



Light & Engineering  Vol. 28, No. 2

112

proved to be more accurate. With that, its error is 
partially related to exclusion of small summands 
out of expressions (6). That is why it may be also 
reduced by using a larger number of summands; 
however, this would impair processing speed of the 
method.

With the defined data set (2),  there are no re-
serves for increase of accuracy of the method of 
piecewise-linear interpolation.

It is worth noting that PB’s described by means 
of formulae of the form (3) and defined by means of 
trigonometric interpolation may be of inherent val-
ue. Being defined once, they may be used for differ-
ent calculations, e.g. for transformation of photo-
metric systems.
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