Статистические оценки передаточных характеристик, предельных дальностей и скоростей передачи информации по импульсным атмосферным бистатическим оптическим каналам связи

 $M.В.\ TAPACEHKOB^{1},\ E.C.\ \PiO3HAXAPEB^{1,2},\ B.В.\ БЕЛОB^{1}$

- ¹ Институт оптики атмосферы им. В.Е. Зуева СО РАН, Томск
- ² Томский государственный университет, Томск

E-mail: belov@iao.ru, tmv@iao.ru

Аннотация

На основе алгоритма модифицированной двойной локальной оценки создана программа моделирования методом Монте-Карло импульсных реакций бистатических атмосферных аэрозольно-газовых каналов оптико-электронных систем связи (ОЭСС). Она использована в серии численных экспериментов для статистической оценки передаточных характеристик этих каналов в зависимости от оптических характеристик модельной плоско-параллельной атмосферы на $\lambda = 0.3, 0.5$ и 0.9 мкм при метеорологической дальности видимости $S_M = 10$ и 50 км. Результаты получены для набора базовых расстояний между источником и приёмником до 50 км и угловых ориентаций оптических осей пучка лазерного излучения и приёмной системы в широкой области их значений. Установлены зависимости максимальных значений импульсных реакций загоризонтных каналов ОЭСС от вариаций этих параметров.

Ключевые слова: атмосфера, рассеянное лазерное излучение, бистатическая (загоризонтная) оптическая связь,, предельные базовые расстояния, предельная частота передачи импульсов.

Введение

Беспроводная оптическая связь по атмосферным каналам развивается в двух направлениях: в пределах прямой видимости источника приёмником и вне её. Основное достоинство связи первого типа — высокая скорость передачи данных. Недостатки — прерывание или невозможность её осуществления, связанные с препятствиями на линии распространения информационных сигналов и «беганием пучка» по входному зрачку оптической системы приёмника, обусловленным турбулентными пульсациями оптических характеристик в атмосферном коммуникационном канале. Этих недостатков лишена оптическая связь вне прямой видимости, что позволяет осуществлять её на значительно большие расстояния.

В зарубежной литературе оптико-электронные системы связи (ОЭСС) вне прямой видимости называются ОЭСС «Non Line-Of-Sight» («NLOS»), а в отечественной – загоризонтными или бистатическими ОЭСС. Работ в российской и зарубежной печати по этим системам гораздо меньше, чем по системам в пределах прямой видимости. При этом из работ [1–7] следует, что загоризонтные ОЭСС можно условно делить на ОЭСС многоадресной оптической связи на коротких и на больших расстояниях.

Первые результаты исследований в ИОА СО РАН некоторых характеристик бистатических каналов ОЭСС опубликованы в статье [5]. Результаты последующих полевых

экспериментальных исследований передаточных свойств этих каналов рассмотрены в статьях [6–8]. При этом в [8], в частности, сообщается, что в экспериментах реализована загоризонтная связь при безоблачной атмосфере на расстояниях между источником и приёмником излучения до 70 км и длине волны лазерного излучения $\lambda = 510,6$ нм. Для того, чтобы прогнозировать влияние конкретного оптического состояния атмосферы на качество связи и определять оптимальную геометрическую схему её реализации, экспериментальные исследования были нами дополнены теоретическими.

Основные результаты наших предыдущих теоретических исследований опубликованы в статьях [5, 9, 10]. Их целью было моделирование отклика атмосферы как линейной системы на входной дельта-импульс (т.е. определение импульсной реакции или импульсной переходной характеристики h(t)) и поиск, используя эту функцию, оптимальных схем связи. В рамках этой задачи в работе [9] предложен и рассмотрен алгоритм модифицированной двойной локальной оценки метода Монте-Карло решения нестационарного уравнения переноса излучения [11]. Идея предложенного нами алгоритма состоит в том, что в отличие от классического алгоритма двойной локальной оценки в нём в каждой точке столкновения делается двойная локальная оценка в каждый возможный временной интервал. Предложенный алгоритм [9] был взят за основу в настоящей работе. В статьях [9, 10] этот алгоритм сравнивается с предложенными другими авторами алгоритмами статистического моделирования функции h(t) – из [12,13]. Используя предложенный алгоритм, нами [14]: 1) выполнен анализ качества атмосферных каналов связи на рассеянном лазерном излучении, когда ось лазерного пучка и оптическая ось приёмника лежат в одной плоскости, перпендикулярной земной поверхности (плоская модель системы атмосфера-земная поверхность) и зенитные углы этих осей составляют 85°; 2) определены предельные дальности связи и предельные скорости передачи информации на $\lambda = 0.5$ мкм и заданных характеристиках приёмо-передающей системы; 3) выполнено сравнение передаточных свойств каналов на $\lambda = 0.3, 0.5$ и 0.9 мкм.

В настоящей статье рассмотрен более общий случай – когда сняты ограничения на положение в пространстве плоскости, содержащей оси лазерного пучка и приёмной оптической системы, и на значения зенитных углов ориентации этих осей.

Постановка задачи

Известно, что, зная отклик атмосферы как линейной системы на входной дельта-импульс (импульсную реак-

«СВЕТОТЕХНИКА», 2018, № 4

Оптические параметры приземного (0-0,1 км) слоя атмосферы, используемые в расчётах ($\sigma_{t, a}$ — коэффициент аэрозольного ослабления, $\sigma_{t, m}$ — коэффициент молекулярного ослабления, $\sigma_{s, m}$ — коэффициент молекулярного рассеяния)

λ, мкм	S_M , km	$\sigma_{t, a}$, KM ⁻¹	$\sigma_{s, a}$, Km ⁻¹	$\sigma_{t, m}$, KM ⁻¹	$\sigma_{s, m}$, km ⁻¹
0,3	10	0,661	0,620	0,165	0,140
0,3	50	0,113	0,106	0,165	0,140
0,5	10	0,433	0,410	0,0166	0,0165
0,5	50	0,0739	0,0700	0,0166	0,0165
0,9	10	0,215	0,196	0,137	0,0015
0,9	50	0,0367	0,0334	0,137	0,0015

цию) и входной сигнал, можно определить принимаемый сигнал как интеграл свёртки вида

$$P(t) = S \int_{0}^{\infty} P_0(t')h(t-t')dt' = S \cdot p(t),$$

где S – площадь приёмной апертуры; p(t) – мощность принимаемого излучения, отнесённая к единице площади приёмной апертуры; $P_0(t)$ – зависимость мощности источника от времени.

Действие атмосферного канала ОЭСС рассматривается как действие линейной системы (предполагаем отсутствие нелинейных эффектов при взаимодействии излучения со средой в канале связи). Определение импульсной реакции атмосферных каналов ОЭСС выполнено в следующей постановке. Рассматривается плоская система атмосфера-земная поверхность без учёта отражения от земной поверхности. Атмосфера является аэрозольно-газовой средой толщиной в 100 км, разделённой на 32 однородных слоя, в пределах каждого из которых заданы оптические параметры аэрозольно-газовой атмосферы. Верхняя граница первого слоя задаётся на высоте 0,1 км от земной

Рис. 1. Геометрическая схема атмосферной бистатической линии связи

поверхности, второго -0.5 км, а границы слоёв с третьего по двадцать третий имеют шаг в 1 км. Для последующих слоёв толщина слоя постепенно растёт с 2 до 30 км. (Подробнее здесь эти значения не приводятся, так как они слабо влияют на результаты расчётов.)

Геометрическая схема формирования канала связи приведена на рис. 1. В начале координат (на земной поверхности) располагается точечный источник излучения с координатами (0,0,0) с расходимостью пучка v_0 , ориентированный в направлении ω_0 в плоскости Syz, под зенитным углом θ_0 . На базовом расстоянии Y_N под углом α от плоскости Syz на земной поверхности располагается приёмная система, оптическая ось которой ориентирована в точку I на оси пучка источника, расположенную на высоте H от поверхности Земли. Зенитный угол оптической оси приёмной системы — θ_d , а угол её поля зрения — v_d .

Пусть требуется определить импульсную реакцию бистатического канала ОЭСС для заданных условий его формирования. При этом плоскость Syz назовём плоскостью источника, а плоскость SID — плоскостью приёмника.

Результаты расчётов

Расчёты по программе на основе алгоритма модифицированной двойной локальной оценки [9] выполнялись при следующих оптико-геометрических условиях: $\lambda = 0.3$, 0,5, 0,9 мкм; метеорологические дальности видимости $S_M = 10$ и 50 км. Оптические параметры безоблачной аэрозольно-газовой атмосферы при указанных S_M задавались генератором оптических моделей на основе программы «LOWTRAN7» [15]. Значения оптических коэффициентов для приземного слоя приведены в табл. 1. При этом θ_0 = 0, 45 и 85°; $v_0 = 0.0034$ °; $Y_N = 0.5-50$ км; $\alpha = 0, 10, 30, 60$ и 90°; $H = H_{min}$, 0,1, 0,5, 1, 3 и 5 км; $v_d = 2^\circ$; максимальная длина траектории (без Y_N) l_{max} =200 км. В качестве H_{min} бралась H, при которой $\theta_d=85^\circ$. Суммарно расчёты выполнялись для 2412 вариантов оптико-геометрических условий. Время расчётов одного варианта существенно зависело от условий расчётов и составляло порядка 40 мин на ЭВМ с производительностью по тесту «LIN-X 19.5 GFlops».

Средняя по временным интервалам погрешность полученных результатов расчётов при $S_M = 50$ км составляла 0.1-6.2% во всех рассмотренных вариантах, а при $S_M = 10$ км -0.1-9% за исключением вариантов с $\lambda = 0.3$ и 0.5 мкм при $Y_N \ge 30$ км, в которых средняя по временным ин-

тервалам погрешность лежит в пределах 0,16–34 %. Иллюстрации некоторых результатов расчёта максимумов импульсных реакций по временным интервалам h_{max} при $H=H_{min}$ приведены на рис. 2.

Выполненный анализ зависимости h_{max} от оптико-геометрических условий показывает, что при небольших базовых расстояниях Y_N (2–3 км) при прочих равных условиях h_{max} максимальна на $\lambda = 0,3$ мкм. При больших Y_N и низкой мутности атмосферы ($S_{M} = 50$ км) h_{max} максимальна на $\lambda = 0.5$ мкм. При высокой мутности атмосферы ($S_M = 10$ км) поведение h_{max} сложнее. При небольших а (вблизи 0°) при $Y_N = 2-10$ км h_{max} максимальна на $\lambda = 0,5$ мкм, а при $Y_N > 10$ км на $\lambda = 0.9$ мкм (рис. 2, *a*). Однако при $\alpha \ge 10^\circ$ и $Y_N > 2$ км h_{max} максимальна на $\lambda = 0.5$ мкм.

Причина такой зависимости значений h_{max} от варьируемых параметров состоит в том, что на $\lambda=0,3$ мкм не только сильнее рассеяние излучения, но и больше, чем на других λ , его ослабление (в основном из-за поглощения озоном), а это при больших Y_N

резко снижает мощность принимаемого сигнала. Что касается $\lambda=0,5$ и 0,9 мкм, то на первой λ по сравнению со второй при высокой мутности атмосферы выше роль рассеяния и ослабления и ниже — поглощения (из-за наличия на $\lambda=0,9$ мкм поглощения водяным паром). Это приводит к тому, что для ряда схем при больших Y_N из-за большего влияния ослабления излучения на $\lambda=0,5$ мкм при высокой мутности атмосферы принимаемое излучение оказывается слабее, чем на $\lambda=0,9$ мкм.

Анализ зависимости h_{max} от S_M показывает, что при небольших Y_N (от 0,5 до 10 км) h_{max} выше при $S_M=10$ км, а при больших — при $S_M=50$ км. Это связано с тем, что с ростом роли рассеяния в атмосфере при малых Y_N сигнал растёт, но также растёт и влияние ослабления излучения. Поэтому при больших Y_N ослабление излучения сильнее уменьшает принимаемый сигнал, чем рассеяние излучения его увеличивает.

Анализ зависимости h_{max} от α при фиксированной λ показывает, что с ростом α при прочих равных условиях h_{max} убывает. Это связано с ростом протяжённости трассы, а также с формой индикатрис рассеяния.

Проведённые расчёты также показывают, что при прочих равных условиях h_{max} при $H=H_{min}$ выше, чем при любом $H>H_{min}$. Это связано с тем, что при $H=H_{min}$ длина пути SID и углы рассеяния траекторий в среднем минимальны.

Зная характеристики приёмо-передающей аппаратуры и импульсную реакцию атмосферного канала, можно определить предельную дальность линии связи. В качестве соответствующего примера рассмотрим лазер с $\lambda=0.5$ мкм как передающую информационную систему. Предположим, что форма лазерного импульса прямоугольная, его длительность $\Delta t=30$ нс и средняя мощность в импульсе

Рис. 2. Максимумы импульсной реакции $h_{max}(Y_N)$ при: $S_M=10$ км, $\alpha=0^\circ$, $\theta_d=85^\circ$ (a); $S_M=50$ км, $\alpha=0^\circ$, $\theta_d=85^\circ$ (b); $S_M=10$ км, $\alpha=60^\circ$, $\theta_d=85^\circ$ (a); $S_M=50$ км, $\alpha=60^\circ$, $\theta_d=85^\circ$ (a); $S_M=50$ км, $\alpha=60^\circ$, $\theta_d=85^\circ$ (a)

 P_0 = 18182 Вт. Пусть в составе идеальной приёмной оптической системы используется усилительный элемент (ФЭУ-17а). За предельную дальность связи при заданных α и θ_0 примем Y_N , при котором уровень мощности принимаемого излучения P совпадает с предельным. За верхнюю оценку P примем максимум P при заданных условиях.

С ростом Y_N значения импульсной реакции меняются в разы, поэтому имеет смысл рассматривать величину отношения P_0 к P, приведённую к децибелам, η [2]:

$$\eta = 10 \lg \left(P_0 / P \right) = 10 \lg \left(\frac{P_0}{pS} \right),$$

где p — мощность принимаемого излучения на единицу площади апертуры, S — площадь апертуры.

Тогда предельным Y_N будет расстояние, при котором

$$\eta > \eta_*, \ \eta_* = 10 \lg \left(\frac{P_0}{P_*}\right),$$

где P_* – предельная P_0 .

В качестве предельной примем мощность, удовлетворяющую соотношению [16–18]

$$\rho = \frac{F\Sigma_{k}M}{\sqrt{2e\Delta f[M^{2}I_{k}(1+B) + \frac{2kT}{eR_{u}}(1+\frac{R_{s}}{R_{u}})]}} = 1,$$
 (1)

где

$$M = \frac{\Sigma_A}{\Sigma_k}, \Delta f = \frac{1}{2R_n C_a},$$

$$I_k = \Sigma_k \cdot F + I_{m\kappa} + \Sigma_k \cdot F_{\phi},$$

$$I_{m\kappa} = j_T \cdot Q,$$
(2)

 ρ – отношение сигнал-шум; I_k – среднее значение тока эмиссии фотокатода; F – среднее значение измеряемого светового потока; Σ_k – интегральная чувствительность фотокатода; Σ_A – анодная чувствительность; R_9 – эквивалентное шумовое сопротивление; (1 + B) – фактор шума; T – абсолютная температура $\Phi ЭУ$; M – коэффициент усиления $\Phi \ni Y$; Δf – полоса частот; $R_{\scriptscriptstyle H}$ – сопротивление нагрузки; C_a – ёмкость между выводом анода и последним каскадом; F_{ϕ} – фоновая засветка; $I_{m\kappa}$ – ток термоэмиссии фотокатода; j_T – плотность термотока; Q – площадь фотокатода.

В расчётах использовались следующие значения величин в (1) и (2) [6, 16–21]: $\Sigma_k = 40$ мкА/лм [20, С. 134]; $\Sigma_A = 10$ А/лм [20, С. 134]; $R_H = 10^8$ Ом $\Sigma_M = 50$ км, $\theta_0 = 85^\circ$ [18, С. 274]; $C_a = 10^{-11}$ Ф [18, С. 274];

1+B=2,5 [18, С. 274]; T=256~K [6]; $R_9=3,5\cdot 10^6~{\rm OM}$ [20, С. 161]; $j_T=10^{-15}~{\rm A/cm^2}$ [16, С. 109]; $Q=0,8~{\rm cm^2}$ [19, С. 46]; $F_\phi=0$ лм.

Как показали выполненные нами ранее оценки [14] для Φ ЭУ-17а, в рассмотренных нами условиях $F = 2 \cdot 10^{-11}$ лм. Для перевода лм в Вт воспользуемся формулой [21, C. 23]

$$P = \frac{F}{Cv(\lambda)}$$

где C = 683 лм/Вт, $\nu(\lambda)$ = 0,323 на λ = 0,5 мкм [21, C. 23]. Отсюда следует, что ρ = 1 при P_* = 9,07·10⁻¹⁴ Вт, что отвечает равенству η_* = 173 дБ.

Отметить, что в настоящей статье рассмотрен частный случай, когда $F_\phi=0$ лм. Случай же наличия солнечного фона будет предметом следующих работ. Алгоритм статистического моделирования фонового излучения разработан и оттестирован нами в рамках работы [22].

Для максимума P и случаев, когда $H=H_{min}$ (что соответствует наилучшим условиям связи по P), было рассчитано отношение η . Для его описания была построена аппроксимация вида

$$\eta(\theta_{o}, Y_{N}, \alpha) =$$

$$= \begin{pmatrix} C_{1} + C_{2} \left(1 - \cos \theta_{o} \right) + \\ + C_{3} \left| \alpha \right| \left(1 - \cos \theta_{o} \right) \end{pmatrix} \left(\frac{Y_{N}}{0, 5} \right)^{N_{0} + C_{4} \theta_{0} + C_{5} \theta_{0} |\alpha|}, \tag{3}$$

где C_1 – C_5 , N_0 – константы аппроксимации.

Условия применимости формулы (3): $\theta_d=85^\circ$ ($H=H_{min}$), $-90^\circ<\alpha<90^\circ$ и $0^\circ<\theta_0<85^\circ$ и $Y_N=0.5-50$ км. Зна-

Рис. 3. Зависимость η (x, y) на λ = 0,5 мкм при: S_M = 50 км, θ_0 = 0° (a); S_M = 10 км, θ_0 = 0° (a); S_M = 10 км, θ_0 = 85° (a); S_M = 10 км, θ_0 = 85° (a); S_M = 10 км, S_M =

чения констант аппроксимации приведены в табл. 2. Абсолютная погрешность аппроксимации при $S_M = 50$ км составляет 0,01–9,06 дБ, а при $S_M = 10$ км - 0,02–12,8 дБ.

Используя аппроксимацию (3), построены зависимости η от расположения приёмной системы и θ_0 для ситуаций, когда $\eta < 173$ дБ (рис. 3). Из рисунка видно, что полученные зависимости полностью согласуются с выводами, полученными для зависимостей h_{max} .

Другой фактор, характеризующий качество канала связи — предельное количество импульсов в единицу времени, которое можно передавать и принимать по каналу связи. С этой характеристикой связана скорость передачи информации. Следуя работе [2], в качестве предельной частоты передачи импульсов ν , которую допускает канал связи, можно принять величину ν_{max} , определяемую неявно как

$$\frac{\left|F[P(t)](\nu_{max})\right|}{\left|F[P(t)](0)\right|} = 0,5,$$

$$F[P(t)](v) = \int_{-\infty}^{+\infty} P(t)e^{2\pi i v t} dt$$

где P(t) — распределение мощности принимаемого излучения; F — преобразование Фурье.

Для оптико-геометрических условий и характеристик приёмо-передающей аппаратуры, описанных выше, были вычислены значения v_{max} . Примеры результатов расчётов приведены на рис. 4, а в табл. 3 приведён диапазон изменения v_{max} при изменении Y_N от 0,5 до 50 км и различных значениях θ_0 и α .

Константы аппроксимации для расчёта η

λ , mkm	S_M , км	С₁, дБ	С₂, дБ	<i>C</i> ₃ , дБ/рад	N_0	C ₄	C ₅
0,5	10	114	-33,4	35,2	0,109	0,024	-0,016
0,5	50	120	-31,2	31,8	0,076	0,007	-0,003

Таблица 3

Диапазон изменения v_{max}

θ_0	α	$v_{max}(0,5)$	v _{max} (50)	θ_0	α	$v_{max}(0,5)$	v _{max} (50)	
$S_M = 10 \text{ km}$				S _M = 50 км				
0		4,53E+06	7,65E+03	0		4,61E+06	3,29E+04	
45	0	1,04E+07	1,71E+04	45	0	1,05E+07	8,58E+04	
45	10	1,03E+07	1,82E+04	45	10	1,03E+07	8,34E+04	
45	30	9,06E+06	1,28E+04	45	30	9,15E+06	6,88E+04	
45	60	6,45E+06	8,48E+03	45	60	6,55E+06	4,34E+04	
45	90	4,34E+06	6,15E+03	45	90	4,44E+06	2,77E+04	
85	0	1,99E+07	7,22E+04	85	0	1,99E+07	1,09E+06	
85	10	1,87E+07	2,14E+04	85	10	1,88E+07	3,88E+05	
85	30	1,22E+07	9,15E+03	85	30	1,24E+07	4,95E+04	
85	60	2,72E+06	4,43E+03	85	60	2,89E+06	1,07E+04	
здесь $v_{max}\left(A\right)=v_{max}\left(A=Y_{N}\right)$								

Результаты расчётов показывают, что с ростом Y_N и α v_{max} падает. При небольших Y_N (до 5 км) v_{max} слабо зависит от мутности среды, а при больших Y_N с ростом мутности v_{max} уменьшается в несколько раз. В целом из табл. 3 следует, что при $\Delta t = 30$ нс и заданных параметрах приёмо-передающей системы связи v_{max} лежит в пределах от $4\cdot 10^3$ до $2\cdot 10^7$ Гц.

Заключение

На основе алгоритма модифицированной двойной локальной оценки [9, 10] создана программа моделирования методом Монте-Карло импульствения методом мет

ных реакций бистатических атмосферных аэрозольно-газовых каналов ОЭСС. Она использована в серии численных экспериментов для статистической оценки передаточных характеристик этих каналов в зависимости от оптических характеристик модельной плоско-параллельной атмосферы на $\lambda=0,3,\,0,5$ и 0,9 мкм при метеорологической дальности видимости $S_M=10$ и 50 км, Результаты получены для набора базовых расстояний между источником и приёмником до 50 км и угловых ориентаций оптических осей лазерного излучения и приёмной системы в широкой области их значений. Установлены зависимости максимальных значений импульс-

Рис. 4. Зависимость $v_{max}(Y_N)$ при $S_M = 10$ км (a) и 50 км (6)

ных реакций загоризонтных каналов ОЭСС от вариаций этих параметров.

Осуществлена верхняя оценка предельных частот и дальностей действия модельной оптико-электронной системы связи, которая имитирует уже использованную в полевых экспериментальных исследованиях [7, 8].

Основные выводы из анализа полученных результатов сводятся к следующему: 1) при небольших базовых расстояниях (2–3 км) при прочих равных условиях максимальная мощность принимаемого информационного импульса максимальна на $\lambda=0,3$ мкм; 2) при больших базовых расстояниях и низкой мутности среды ($S_M=50$ км) она мо-

«СВЕТОТЕХНИКА», 2018, № 4

жет достигаться на $\lambda=0.5$ мкм; 3) при высокой мутности атмосферы ($S_M=10$ км) в зависимости от базовых расстояний и ориентации плоскости приёма она уже может достигаться на $\lambda=0.5$ и 0.9 мкм.

Показано, что предельные частоты передачи импульсов для бистатической коммуникационной оптико-электронной системы в зависимости от оптического состояния атмосферы и геометрических параметров схем формирования каналов связи лежат в пределах от $4\cdot10^3$ до $2\cdot10^7$ Гц.

Работа выполнена при финансовой поддержке в рамках Приоритетного направления II.10, проект II.10.3.3 «Прямые и обратные задачи зондирования атмосферы и земной поверхности, атмосферная коррекция и коммуникационные оптико-электронные системы на рассеянном лазерном излучении».

СПИСОК ЛИТЕРАТУРЫ

- 1. Поллер Б.В., Бритвин А.В., Коломников Ю.Д., Головачев Ю.Г., Коняев С.И., Кусакина А.Е., Шергунова Н.А. Некоторые характеристики распространения лазерных сигналов в условиях обсерватории СО РАН «Кайтанак» на горном Алтае // Интерэкспо Гео-Сибирь.— 2012. Т. 2, № 4. С. 64—68.
- 2. Haipeng D., Chen G., Arun K., Sadler B.M., Xu Z. Modeling of non-line-of-sight ultraviolet scattering channels for communication // IEEE journal on selected areas in communications.— 2009. Vol. 27, No. 9. P. 1535—1544.
- 3. Han D., Liu Y., Zhang K., Luo P., Zhang M. Theoretical and experimental research on diversity reception technology in NLOS UV communication system// Optics express.—2012.—Vol. 20, No. 14.—P. 15833—15842.
- 4. Elshimy M.A., Hranilovic S. Non-line-of-sight single-scatter propagation model for noncoplanar geometries // JOSA A.— 2011. Vol. 28, No. 3.—P. 420—428.
- 5. *Борисов Б.Д., Белов В.В.* Влияние погодных условий на параметры короткого лазерного импульса, отражённого атмосферой // Оптика атмосферы и океана. $\sim 2011. T. 24$, № 04. $\sim C. 263-268.$
- 6. Белов В.В., Тарасенков М.В., Абрамочкин В.Н., Иванов В.В., Федосов А.В., Троицкий В.О., Шиянов Д.В. Атмосферные бистатические каналы связи с рассеянием. Часть 1. Методы исследования // Оптика атмосферы и океана.— 2013. T. 26, № 04. C. 261—267.
- 7. Белов В.В., Тарасенков М.В., Абрамочкин В.Н. Бистатические атмосферные оптико-электронные системы связи (полевые эксперименты) // Письма в ЖТФ.—2014. Т. 40, вып. 19. С. 89—95.
- 8. Абрамочкин В.Н., Белов В.В., Гриднев Ю.В., Кудрявцев А.Н., Тарасенков М.В., Федосов А.В. Оптико-электронная связь в атмосфере на рассеянном лазерном излучении. Полевые эксперименты // Светотехника.— 2017.- № 4.- C. 24–30.
- 9. Белов В.В., Тарасенков М.В. Три алгоритма статистического моделирования в задачах оптической связи на рассеянном излучении и бистатического зондирования // Оптика атмосферы и океана.— 2016. Т. 29, № 05. С. 397—403.
- 10. Тарасенков М.В., Белов В.В. Сравнение трудоёмкости алгоритмов статистического моделирования импульсной реакции канала бистатической лазерной связи на рассеянном излучении и бистатического лазерного зондирования // Вычислительные технологии.— 2017. Т. 22, № 3. С. 91—102.
- 11. Марчук Г.И., Михайлов Г.А., Назаралиев М.А., Дарбинян Р.А., Каргин Б.А., Елепов Б.С. Метод Монте-Карло в атмосферной оптике. Новосибирск: Наука, Сибирское отделение, 1976.—284 с.
- 12. *Lotova G.Z.* Modification of the double local estimate of the Monte Carlo method in radiation transfer theory // Russian Journal of Numerical Analysis and Mathematical Modeling.—2011. Vol. 26, No. 5.—P. 491–500.

- 13. $\mathit{Muxaйлов}$ Г.А., $\mathit{Лотова}$ Г.З. Численно-статистическая оценка потока частиц с конечной дисперсией // ДАН.— 2012. Т. 447, № 1. С. 18—21.
- 14. Тарасенков М.В., Белов В.В., Познахарев Е.С. Моделирование процесса передачи информации по атмосферным каналам распространения рассеянного лазерного излучения // Оптика атмосферы и океана.— 2017.-T. 30, № 5. -C. 371–376.
- 15. Kneizys F.X., Shettle E.P., Anderson G.P., Abreu L.W., Chetwynd J.H., Selby J.E.A., Clough S.A., Gallery W.O. User Guide to LOWTRAN-7. ARGL-TR-86–0177. ERP 1010. Hansom AFB. MA 01731, 1988. –137 p.
- 16. *Анисимова И.И., Глуховской Б.М.* Фотоэлектронные умножители. М.: Сов. радио, 1974. 61 с.
- 17. Аксененко М.Д., Бараночников М.Л. Приёмники оптического излучения: справочник. М.: Радио и связь, 1987. 296 с.
- 18. Соболева Н.А., Меламид А.Е. Фотоэлектронные приборы. М.: Высш. школа, 1974.– 376 с.
- 19. Васильев А.Ф., Чмутин А.М. Фотоэлектрические приёмники излучения. В.: ВолГУ, 2010.— 81 с.
- 20. Чечик Н.О., Файнштейн С.М., Лифшиц Т.М. Электронные умножители / Под ред. Д.В. Зернова. М.: ГИТТЛ, 1957.– 576 с.
- 21. *Гуревич М.М.* Фотометрия (теория, методы и приборы). Л.: Энергоатомиздат, 1983.– 272 с.
- 22. Белов В.В., Тарасенков М.В., Пискунов К.П. Параметрическая модель солнечной дымки в видимой и УФ-области спектра // Оптика атмосферы и океана. 2010. Т. 23, № 04. С. 294—297.

Тарасенков Михаил Викторович, кандидат физ.-мат. наук. Окончил в 2007 г. Томский государственный университет (ТГУ). Старший научный сотрудник Института оптики атмосферы им. В.Е. Зуева СО РАН. Область научных интересов: анализ закономерностей формирования изображений через атмосферу, атмосферная коррекция изображений в видимом и УФ диапазонах излучения, теоретические исследования по каналам связи вне прямой видимости

Познахарев Егор Сергеевич, студент ТГУ. Инженер Института оптики атмосферы им. В.Е. Зуева СО РАН. Область научных интересов: теоретические и экспериментальные исследования по каналам связи вне прямой видимости

Белов Владимир Васильевич, доктор физ.-мат. наук, профессор. Окончил в 1971 г. ТГУ. Зав. лабораторией РОС Института оптики атмосферы им. В.Е. Зуева СО РАН. Заслуженный деятель науки РФ. Область научных интересов: теория переноса оптического излучения в рассеивающих и поглощающих средах, теория лазерного зондирования, теория видения, атмосферная коррекция аэрокосмических изображений земной поверхности, метод Монте-Карло, многократное рассеяние

42 «СВЕТОТЕХНИКА», 2018, № 4