### Определение характеристик спектрорадиометров для оценки фотобиологической безопасности светотехнических изделий

Ц. ЛИ, Т. MOУ <sup>1</sup>, Л. ЧЭН

Компания SENSING Instruments Co., Ltd; Таможенная инспекция и карантинное бюро провинции Чжэцзян, Ханчжоу, КНР

#### Аннотапия

Опасность актиничного УФ излучения, ближнего УФ излучения и синего света - три основные опасности, связанные с источниками света общего назначения. Для оценки характеристик спектрорадиометров были выбраны пять типичных таких источников. Полученные результаты показали, что результаты измерений так называемой актиничной УФ облучённости очень чувствительны к рассеянному свету и что спектрорадиометры с монохроматором и нечувствительным к видимому излучению фотоумножителем могут решать проблемы оценки фотобиологической безопасности светотехнических изделий.

Ключевые слова: фотобиологическая безопасность, спектрорадиометр, актиничная УФ облучённость, рассеянный свет.

E-mail: mou@sensingm.com. Перевод с англ. Е.И. Розовского

#### 1. Введение

В настоящее время для освещения общего назначения обычно используются галогенные лампы накаливания (ГЛН), разрядные лампы и СД-источники света. Помимо видимого света, эти источники могут генерировать и небольшое количество УФ и ИК излучений. Авторами была оценена степень безопасности излучения этих изделий. Предельные уровни излучения и классификация опасности излучения приводятся в IEC 62471/CIE S009 [1]. Однако уровни ИК излучения источников света (ламп) общего назначения (ЛОН) обычно невелики и не могут считаться опасными. Поэтому в плане опасности оптического излучения ЛОН рассматривается только возможное фотобиологическое действие актиничного УФ излучения, ближнего УФ излучения и синего (голубого) света. Для оценки опасности оптического излучения ЛОН требуется измерить актиничную УФ облучённость от них  $E_s$ , облучённость от них в области ближнего УФ (УФ-А) излучения  $E_{UVA}$  и их физиологически эффективную яркость опасного (для сетчатки) сине*го излучения*  $L_b$ ; но широкополосные

приёмники излучения сложно согласовывать со спектральной чувствительностью фотобиологических эффектов. Классификацию источников света по безопасности проводят с помощью разных спектрорадиометров, в том числе сканирующих с монохроматором и ПЗС-матричных [2-4]. Изза большого разброса характеристик современных коммерческих спектрорадиометров – таких как дешёвые ПЗС-спектрометры, хорошо сконструированные матричные спектрорадиометры или спектрорадиометры с одинарным или двойным монохроматором – трудно выбрать приемлемые по цене и качеству практичные приборы для получения достоверных оценок безопасности источников света.

#### 2. Условия проведения оценки

Сканирующие спектрорадиометры с монохроматором позволяют вести измерения в широком диапазоне длин волн при разных выделяемых щелями спектральных интервалах и с хорошей линейностью. Они всё ещё широко используются во многих областях применения. Благодаря совершенствованию ПЗС-матричных приёмников и мультихроматоров ПЗС-матричные спектрорадиометры всё больше подходят для разных применений.

При измерениях спектральных распределений облучённости и энергетической яркости ширина входной и выходной щелей должна быть одной и той же — чтобы график функции спектральной чувствительности спектрорадиометра представляла собой равнобедренный треугольник; это играет огромную роль в случае очень узких спектральных линий измеряемых разрядных ламп. Спектро-

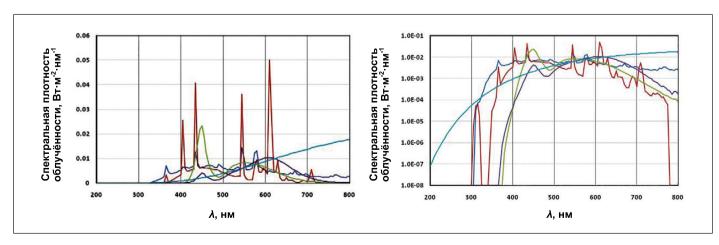



Рис. 1. Спектральные распределения облучённости от типичных источников света

«СВЕТОТЕХНИКА», 2015, № 1

По материалам доклада на конференции МКО «Lighting Quality & Energy Efficiency». 23–26.04.2014, Куала-Лумпур, Малайзия.

Влияние рассеянного света

| Рассеянный свет      | МГЛ                   | лл                    | СД холодно-белого<br>света | СД тёпло-белого света | ГЛН (2856 К)          |  |  |  |
|----------------------|-----------------------|-----------------------|----------------------------|-----------------------|-----------------------|--|--|--|
| $E_s$                |                       |                       |                            |                       |                       |  |  |  |
| 0                    | 2,64·10 <sup>-5</sup> | 1,18·10 <sup>-5</sup> | 1,03·10 <sup>-8</sup>      | 1,62·10 <sup>-8</sup> | 8,30·10 <sup>-4</sup> |  |  |  |
| 1,0·10 <sup>-6</sup> | 2,64·10 <sup>-5</sup> | 1,08·10 <sup>-4</sup> | 8,35·10 <sup>-5</sup>      | 7,41·10 <sup>-5</sup> | 9,98·10 <sup>-4</sup> |  |  |  |
| 1,0.10-5             | 2,65·10 <sup>-5</sup> | 9,73·10 <sup>-4</sup> | 8,34·10 <sup>-4</sup>      | 7,41·10 <sup>-4</sup> | 2,52·10 <sup>-3</sup> |  |  |  |
| 1,0.10-4             | 1,34·10 <sup>-4</sup> | 9,62·10 <sup>-3</sup> | 8,34·10 <sup>-3</sup>      | 7,41·10 <sup>-3</sup> | 1,77·10 <sup>-2</sup> |  |  |  |
| $1,0\cdot 10^{-3}$   | $1,07 \cdot 10^{-1}$  | 9,61·10 <sup>-2</sup> | 8,34·10 <sup>-2</sup>      | 7,41·10 <sup>-2</sup> | $1,69 \cdot 10^{-1}$  |  |  |  |
| $E_{UVA}$            |                       |                       |                            |                       |                       |  |  |  |
| 0                    | 2,43·10 <sup>-1</sup> | 8,48·10 <sup>-2</sup> | 3,20·10 <sup>-4</sup>      | 1,61·10 <sup>-3</sup> | 3,75·10 <sup>-2</sup> |  |  |  |
| 1,0.10-6             | 2,43·10 <sup>-1</sup> | 8,44.10-2             | $4,74 \cdot 10^{-4}$       | 5,77·10 <sup>-4</sup> | $3,79 \cdot 10^{-2}$  |  |  |  |
| 1,0.10-5             | 2,43·10 <sup>-1</sup> | 8,61·10 <sup>-2</sup> | 1,94·10 <sup>-3</sup>      | 1,88·10 <sup>-3</sup> | 4,08·10 <sup>-2</sup> |  |  |  |
| 1,0.10-4             | 2,43·10 <sup>-1</sup> | $1,03 \cdot 10^{-1}$  | $1,67 \cdot 10^{-2}$       | 1,49·10 <sup>-2</sup> | $7,06 \cdot 10^{-2}$  |  |  |  |
| $1,0\cdot 10^{-3}$   | 4,53·10 <sup>-1</sup> | $2,72 \cdot 10^{-1}$  | $1,64 \cdot 10^{-1}$       | 1,46·10 <sup>-1</sup> | 3,68·10 <sup>-1</sup> |  |  |  |
| $L_b$                |                       |                       |                            |                       |                       |  |  |  |
| 0                    | 9,80                  | 11,77                 | 12,81                      | 2,61                  | 2,96                  |  |  |  |
| 1,0.10-6             | 9,80                  | 11,77                 | 12,82                      | 2,61                  | 2,97                  |  |  |  |
| 1,0.10-5             | 9,80                  | 11,80                 | 12,84                      | 2,63                  | 3,01                  |  |  |  |
| 1,0.10-4             | 9,80                  | 12,06                 | 13,07                      | 2,83                  | 3,47                  |  |  |  |
| $1,0\cdot 10^{-3}$   | 13,02                 | 14,65                 | 15,32                      | 4,83                  | 8,02                  |  |  |  |

радиометры с двойным монохроматором характеризуются очень низким уровнем рассеянного света, что очень важно для измерений в УФ области спектра.

В компактных матричных спектрорадиометрах дифрагированное вогнутой голографической решёткой излучение фокусируется на матричном приёмнике, и необходимость устранения спектра высокого порядка и рассеянного света осложняет оценку фотобиологической безопасности. Ширина входной щели спектрорадиометра определяется компромиссом между его чувствительностью и спектральным разрешением.

Для определения влияния характеристик спектрорадиометра на оценку фотобиологической безопасности источников света были выбраны пять источников света трёх вышеупомянутых типов, включающие в себя МГЛ, ЛЛ, СД холодно-белого света, СД тёпло-белого света и кварцевую ГЛН,

спектры излучения которых приведены на рис. 1. Однако в первую очередь они использовались как объекты измерений соответствующих  $E_s$ ,  $E_{UVA}$  и  $L_b$ .

В плане фотобиологической безопасности группа риска, к которой относится определённый источник света, зависит от условий его применения (то есть условий наблюдения). Согласно требованиям [1], опасность ЛОН следует оценивать при уровне освещённости от них в 500 лк. Поэтому здесь значения  $E_s$  и  $E_{UVA}$  будут определяться при этом условии, тогда как измерение  $L_b$  будет производиться при яркости ЛОН в 10000 кд/м².

#### 3. Влияние основных характеристик

Доля рассеянного света, точность определения длины волны и степень линейности фотоэлектрической характеристики – вот три основные ха-

рактеристики спектрорадиометра. В случае сканирующего спектрорадиометра с двойным монохроматором доля рассеянного света может быть меньше  $10^{-6}$ , тогда как в случае небольшого спектрорадиометра на ПЗС, имеющего малое фокусное расстояние, она может составлять от  $10^{-3}$  до  $10^{-4}$ . При этом лежащие между  $10^{-6}$  и  $10^{-5}$  доли рассеянного света позволяют оценивать его влияние на результаты измерений фотобиологических параметров. На рис. 2 приведены спектральные характеристики источников света, полученные при разных долях рассеянного света. Соответствующие фотобиологические параметры приведены в табл. 1, из которой следует, что результаты измерения  $E_s$  очень чувствительны к рассеянному свету в спектрорадиометре. Если его доля превышает  $10^{-4}$ , это приводит к тому, что группа риска RG1 будет присвоена изделию, относящемуся к группе риска RG0. Так

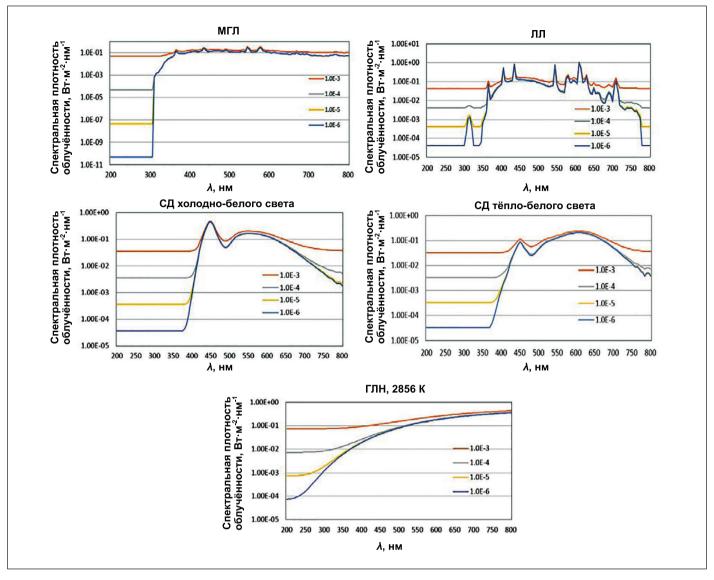
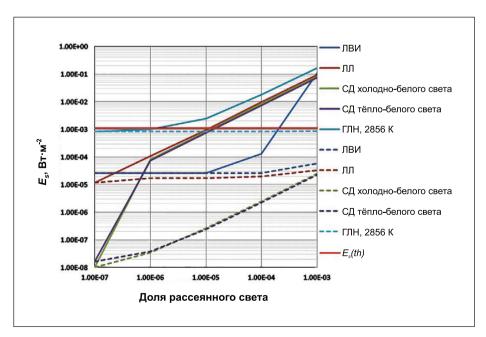




Рис. 2. Спектральные распределения облучённости от типичных источников света с учётом рассеянного света

что при измерении источника света со слабым излучением в УФ области, такого как приведённая в табл. 1 ЛН с цветовой температурой 2856 К, доля рассеянного света не должна превышать  $10^{-6}$ . Однако при оценке опасности синего света для сетчатки для обеспечения не более 5%-ного изменения оцениваемого параметра доля рассеянного света не должна превышать  $10^{-4}$ .

ЛОН преимущественно излучают в видимой области спектра и очень мало в УФ области. Поэтому к влиянию рассеянного видимого излучения на точность измерения в УФ области следует относиться серьёзно. Альтернативным методом устранения влияния рассеянного света может послужить сочетание фотоумножителя, нечувствительного к видимому свету и чувствительного только к коротковолновому УФ излучению



Puc.~3.~ Сравнение изменений актиничной УФ облучённости ( $E_s$ ) от типичных источников света

«СВЕТОТЕХНИКА», 2015, № 1

### Влияние рассеянного света на актиничную УФ облучённость (при нечувствительном к видимому излучению фотоумножителе)

| Рассеянный свет      | МГЛ                   | лл                    | СД холодно-белого<br>света | СД тёпло-белого<br>света | ГЛН (2856 К)          |
|----------------------|-----------------------|-----------------------|----------------------------|--------------------------|-----------------------|
| 0                    | 2,64·10 <sup>-5</sup> | 1,18·10 <sup>-5</sup> | 1,03·10 <sup>-8</sup>      | $1,62 \cdot 10^{-8}$     | 8,30·10 <sup>-4</sup> |
| $1,0\cdot 10^{-6}$   | 2,64·10 <sup>-5</sup> | 1,69·10 <sup>-5</sup> | 3,54·10 <sup>-8</sup>      | 3,85·10 <sup>-8</sup>    | 8,30·10 <sup>-4</sup> |
| 1,0·10 <sup>-5</sup> | 2,64·10 <sup>-5</sup> | 1,71·10 <sup>-5</sup> | 2,62·10 <sup>-7</sup>      | 2,39·10 <sup>-7</sup>    | 8,30·10 <sup>-4</sup> |
| 1,0·10 <sup>-4</sup> | 2,65·10 <sup>-5</sup> | 1,97·10 <sup>-5</sup> | 2,52·10 <sup>-6</sup>      | 2,25·10 <sup>-6</sup>    | 8,35·10 <sup>-4</sup> |
| 1,0·10 <sup>-3</sup> | 5,87·10 <sup>-5</sup> | 3,40·10 <sup>-5</sup> | 2,51·10 <sup>-5</sup>      | 2,23·10 <sup>-5</sup>    | 8,81·10 <sup>-4</sup> |

Таблица 3

#### Влияние смещения длины волны спектрорадиометра

| Длина волны | МГЛ                   | лл                    | СД холодно-белого<br>света | СД тёпло-белого<br>света | ГЛН (2856 К)          |  |  |  |
|-------------|-----------------------|-----------------------|----------------------------|--------------------------|-----------------------|--|--|--|
| $E_s$       |                       |                       |                            |                          |                       |  |  |  |
| 0           | 2,64·10 <sup>-5</sup> | 1,18·10 <sup>-5</sup> | 1,03·10 <sup>-8</sup>      | 1,62·10 <sup>-8</sup>    | 8,30·10 <sup>-4</sup> |  |  |  |
| -0,1        | 2,68·10 <sup>-5</sup> | 1,24·10 <sup>-5</sup> | 1,07·10 <sup>-8</sup>      | 1,79·10 <sup>-8</sup>    | 8,34·10 <sup>-4</sup> |  |  |  |
| -0,2        | 2,71·10 <sup>-5</sup> | 1,29·10 <sup>-5</sup> | 1,11·10 <sup>-8</sup>      | 1,82·10 <sup>-8</sup>    | 8,38·10 <sup>-4</sup> |  |  |  |
| -0,3        | 2,75·10 <sup>-5</sup> | 1,35·10 <sup>-5</sup> | 1,15·10 <sup>-8</sup>      | 1,85·10 <sup>-8</sup>    | 8,43·10 <sup>-4</sup> |  |  |  |
| -0,5        | 2,82·10 <sup>-5</sup> | 1,46·10 <sup>-5</sup> | 1,23·10 <sup>-8</sup>      | 1,92·10 <sup>-8</sup>    | 8,51·10 <sup>-4</sup> |  |  |  |
| +0,1        | 2,64·10 <sup>-5</sup> | 1,18·10 <sup>-5</sup> | 1,03·10 <sup>-8</sup>      | 1,75·10 <sup>-8</sup>    | 8,30·10 <sup>-4</sup> |  |  |  |
| +0,2        | 2,63·10 <sup>-5</sup> | 1,17·10 <sup>-5</sup> | 1,02·10 <sup>-8</sup>      | 1,74·10 <sup>-8</sup>    | 8,26·10 <sup>-4</sup> |  |  |  |
| +0,3        | 2,61·10 <sup>-5</sup> | 1,16·10 <sup>-5</sup> | 1.10-8                     | 1,72·10 <sup>-8</sup>    | 8,23·10 <sup>-4</sup> |  |  |  |
| +0,5        | 2,60·10 <sup>-5</sup> | 1,14·10 <sup>-5</sup> | 9,9·10 <sup>-9</sup>       | $1,7 \cdot 10^{-8}$      | 8,19·10 <sup>-4</sup> |  |  |  |
| $L_b$       |                       |                       |                            |                          |                       |  |  |  |
| 0           | 9,80                  | 11,77                 | 12,81                      | 2,61                     | 2,96                  |  |  |  |
| -0,1        | 9,80                  | 11,77                 | 12,81                      | 2,61                     | 2,96                  |  |  |  |
| -0,2        | 9,80                  | 11,78                 | 12,80                      | 2,61                     | 2,96                  |  |  |  |
| -0,3        | 9,80                  | 11,79                 | 12,78                      | 2,60                     | 2,95                  |  |  |  |
| -0,5        | 9,80                  | 11,79                 | 12,77                      | 2,60                     | 2,95                  |  |  |  |
| +0,1        | 9,80                  | 11,77                 | 12,83                      | 2,61                     | 2,97                  |  |  |  |
| +0,2        | 9,80                  | 11,76                 | 12,84                      | 2,62                     | 2,97                  |  |  |  |
| +0,3        | 9,80                  | 11,76                 | 12,85                      | 2,62                     | 2,97                  |  |  |  |
| +0,5        | 9,81                  | 11,75                 | 12,87                      | 2,63                     | 2,98                  |  |  |  |

на длинах волн 200—320 нм и фотоумножителя, чувствительного к видимому излучению. В табл. 2 показано, что при использовании нечувствительного к видимому излючению фотоумножителя влияние рассеянного света на результаты измерений  $E_s$  существенно уменьшается. На рис. 3 эти результаты (пунктирная линия) приведены вместе с результатами, полученными с помощью обычного спектрорадиометра (сплошная линия).  $E_s(th)$ 

представляет собой предельный уровень  $E_s$  для группы риска RG0 для опасности актиничного УФ излучения. В данном случае классификация этих пяти типичных источников света в соответствии с группами риска не изменится.

В табл. 3 продемонстрировано влияние сдвига длины волны спектрорадиометра на параметры, на основании которых осуществляется классификация безопасности излучения источников света. Так как в интервале 300–320 нм весовая функция  $S_{UV}(\lambda)$ меняется резко (в 300 раз на 20 нм). то в случае ЛЛ влияние сдвига длины волны на  $E_{\rm s}$  оказывается наибольшим – из-за наличия в спектре излучения ЛЛ линии 313 нм. Чтобы неопределённость не превышала 10%, сдвиг длины волны не должен быть большим 0,2 нм, а в случае источников света с непрерывными спектрами излучения – 0,3 нм. Что касается влияния сдвига длины волны на результаты измерения  $L_b$ , то в этом случае весовая функция в интервалах 390-415 и 480-500 нм изменяется вдвое через каждые 5 нм. Поэтому точность определения длины волны должна быть лучше  $\pm 0,5$  нм.

#### 4. Заключение

При оценке фотобиологической безопасности ключевым оборудованием является спектрорадиометр. Его характеристики непосредственно влияют на классификацию изделий по безопасности. Полученные на пяти типичных источниках света результаты говорят о том, что рассеиваемый в спектрорадиометре свет влияет на результаты измерений  $E_s$ . Системы с двойными монохроматорами и системы с одним монохроматором и нечувствительным к видимому излучению фотоумножителем могут применяться для классификации опасности УФ излучения ЛОН. Кроме того, точность установки длины волны спектрорадиометра должна быть не хуже  $\pm 0.2$  нм в УФ диапазоне и не хуже  $\pm 0,5$  нм в видимой области спектра.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. IEC 62471–2006/CIE S009 «Photobiological Safety of Lamps and Lamp Systems».
- 2. Tongsheng Mou. The measurement of weighted LED radiance related to photobio-

logical safety based on the spectroradiometry and imaging methods //CIE Tutorial and Expert Symposium "Spectral and Imaging Methods for Photometry and Radiometry", August 2010, Bern, Switzerland. – P. 30–31.

- 3. Stolyarevskaya, R.I., Bartsev, A.A. Methodology of luminaire blue-light hazard measurements // CIE Conference on Lighting Quality & Energy Eficiency, September 19–21.2012, Hangzhou.
- 4. Tongsheng Mou, Zhenjian Peng. Measurement and standardization of eye safety for optical radiation of LED products // Proc. SPIE 8769, Singapore, 09.04.2013.



Ли Цзюнькай (Junkai Li), инженер. Старший инженер компании SENSING Instruments Co. Ltd. Эксперт по освещению светодиодами Технического комитета ICI 10/

WG5 МЭК. Руководитель разработки нескольких китайских стандартов и участник разработки международных стандартов МЭК (IEC). Область научных интересов: фотометрия, колориметрия, фотобиологическая безопасность освещения и дисплеев



Moy Туншэн (Tongsheng Mou). Профессор Университета провинции Чжэцзян. Главный научный сотрудник компании SENSING Instruments Co. Ltd. и директор Исследовательского

центра интеллектуального и здорового освещения. Руководитель разработки международных стандартов IEC 62341–6–3, IEC 61747–30–4 и IEC 62471–4. Председатель Технического комитета TC2–73 МКО. Лауреат премии МЭК



Чэн Лилин (Liling Cheng), инженер, профессор. Окончила Университет электроники Ханчжоу. Директор лаборатории электробезопасности Академии

науки и техники провинции Чжэцзян. Область научных интересов: испытания электронных и электротехнических изделий на безопасность и электромагнитную совместимость, а также биологическая безопасность ламп и светильников

# Позаравляем с юбилеем!



Редакция и редколлегия журнала, коллеги и друзья сердечно поздравляют с юбилеем известного специалиста в области практической светотехники, ведущего научного сотрудника лаборатории промышленного освещения 000 «Научноисследовательский институт охраны труда в г. Иваново»

## Частухину Пlатьяну Николаевну

и желают ей крепкого здоровья, благополучия и дальнейших творческих успехов

«СВЕТОТЕХНИКА», 2015, № 1