Визуально-когнитивный анализ многомерных данных для характеристики металломатричных композитов Al/SiC

А.Я. ПАК *, *А.А. ЗАХАРОВА*, *А.В. ШКЛЯР*, *Т.А. ПАК* Национальный исследовательский Томский политехнический университет (НИУ «ТПУ»), Томск * E-mail: ayapak@tpu.ru

Аннотация

Приведены результаты обзора литературы о методах получения металломатричных композитов «алюминий-карбид кремния» (ММК Al/ SiC). Проведены сбор, анализ и систематизация литературных данных, в ходе которых собранные текстовые сведения приведены в единую лексико-семантическую систему, а численные – в единую систему размерностей. Анализ литературных данных вёлся методом визуально-когнитивного моделирования, в результате чего определены методы формования ММК Al/SiC и режимные параметры, обеспечивающие наилучшие свойства материала (максимальный уровень теплопроводности и минимальный - теплового линейного расширения). Кроме того, в сравнении с литературными, приведены данные, полученные в проведённой серии экспериментов по получению MMK Al/SiC методом искрового плазменного спекания из SiC, синтезированного в атмосферной электродуговой плазме. В рамках заданной тематики авторам не известны аналоги такой системы анализа и визуализации данных - позволяющей вести анализ многомерных данных, что актуально для решения задач поиска взаимосвязи множества исходных параметров, характеризующих процесс получения ММК Al/SiC и совокупности свойств получаемого данного материала. Приведены данные для сравнения уровней теплопроводности современных («алюминиевых») осветительных приборов со светодиодами и образцов ММК Al/SiC.

Ключевые слова: обзор литературы, сбор и систематизация данных, многомерные данные, визуально-когнитивная модель, теплоотводящий элемент осветительного прибора, MMK Al/SiC, свойства, методы получения, режимы.

1. Введение

Осветительные приборы (ОП) потребляют значительную долю вырабатываемой в мире электроэнергии, составляющую, по разным оценкам, порядка 19 % [1]. Поиск путей снижения энергопотребления ОП без ущерба их потребительским свойствам можно считать одной из основных задач светотехники. При этом активно развивается направление разработки новых и совершенствования действующих технологий создания светодиодов (СД) и ОП с ними (ОП с СД). Существенный фактор, сдерживающий это развитие, – проблема эффективного теплоотвода от ОП с СД [2]. Применение металломатричных композитных материалов на основе алюминия и карбида кремния (MMK Al/SiC) в теплоотводящих элементах ОП может помочь решению этой проблемы.

Наиболее важными свойствами MMK Al/SiC следует считать относительно высокий коэффициент теплопроводности (КТ), 100-200 Вт·м⁻¹·К⁻¹ (нормальные условия), и низкий коэффициент теплового линейного расширения (КТЛР), порядка (8-9)·10⁻⁶ К⁻¹, [3]. При этом теплофизические и механические свойства ММК Al/ SiC существенно зависят от ряда факторов: объёмная доля SiC; морфология и средний размер частиц SiC; относительная плотность и пористость материала; фазовый и гранулометрический состав прочих примесей; метод формования и обработки заготовок под конкретное изделие. Различие в направленности между отдельно взятыми исследованиями по получению и анализу свойств ММК Al/SiC не позволяют сформировать целостный подход к ускорению поиска методов производства данного материала (изделий из него) с заданными свойствами. Комплексные межлисциплинарные исследования свойств ММК Al/SiC могут послужить методологи-

ческой основой научно-обоснованных технологий изготовления теплоотволящих элементов для силовых электроприборов, в частности мощных ОП с СД [4]. Традиционно обзор литературы по методам получения и свойствам MMK Al/SiC содержит текстовые и (или) числовые данные в виде таблиц, а также одномерных зависимостей, связывающих попарно отдельные свойства MMK Al/SiC с одним из параметров, характеризующих получение данного материала, как, например, в обзорных работах [3, 4]. В этой связи важной проблемой поиска нужных закономерностей и прогнозирования свойств материалов, в том числе ММК Al/SiC, является их представление в виде совокупности одномерных зависимостей типа $v=f(x_1), v=f(x_2)$ и т.д., в то время как аргументы данных функций могут характеризоваться наличием физических связей, в том числе неочевидных, а число анализируемых параметров может быть около 5-10. В силу того, что при сопоставлении результатов исследований множества анализируемых параметров не являются полностью пересекающимися или полными, сравнительный анализ с применением аналитических методов весьма затруднён.

Для преодоления подобной трудности предложено использовать средства визуальной аналитики, успешно применённые в решении ряда практических задач по анализу многомерных эмпирических данных [5, 21]. В качестве средств визуальной аналитики, в этом случае, предложены визуальные модели, использующие возможности визуального восприятия для когнитивной интерпретации многомерных данных. Визуальной моделью является воспринимаемый образ, сопоставленный с исходными данными по предварительно определённому правилу – метафоре визуализации, интерпретация которого приводит к формулированию гипотезы ответа на вопрос исследования. Методика использования средств визуальной аналитики позволяет осуществлять верификацию такой гипотезы с привлечением интерактивного управления визуальной моделью.

Современные обзорные работы по данной тематике свидетельствуют о фрагментарности характера исследований, посвящённых, как правило, решению той или иной конкретной задачи по достижению требуемого свой-

ства материала на основе MMK Al/SiC путём изменения какого-либо параметра [4]. Согласно опубликованным обзорным работам в рассматриваемой области, актуальным представляется проведение комплексных междисциплинарных исслелований. связывающих свойства изделий из ММК Al/SiC не только с составом (химическим, фазовым, гранулометрическим) и структурой, но и с методом его получения и особенностями применяемых режимов. Таким образом, разработка многомерной визуальной модели анализа разнородных данных для комплексной оценки и прогнозирования свойств MMK Al/SiC, а также развитие графических методов с привлечением к аналитике когнитивной составляющей представляется крайне актуальной задачей, решение которой требуется для развития технологий создания и применения теплоотводящих элементов на основе MMK Al/SiC для применения в силовых приборах, в том числе осветительных.

В настоящей работе применён метод визуального когнитивного анализа многомерных разнородных данных. а именно сведений из отечественной и зарубежной литературы в отношении методов получения и свойств ММК Al/SiC [5]. В результате построена модель на базе «Autodesk 3D Max», справедливость которой проверена экспериментально путём получения MMK Al/SiC методом искрового плазменного спекания (ИПС). При этом разработанная модель не претендует на полноту сведений отечественной и зарубежной литературы, но при этом не имеет принципиальных ограничений по расширению состава исходных данных и их непрерывному пополнению. Таким образом, разработанная модель может стать новым методом хранения, анализа и проверки экспериментальных данных (в данном случае по ММК Al/SiC) и стать постоянно пополняемой альтернативой периодически проводимым обзорным исследованиям.

2. Методы

Особенностью исследуемых в данной работе исходных данных является большое число разнородных источников информации, в качестве которых выступают публикации, содержащие сведения об экспериментальных исследованиях в заданной области, и связанные с этим обстоятельством разнородность и противоречивость сведений. При подготовке к анализу исходных данных был произведён поиск и отбор статей отечественных и зарубежных издательств, солержаниих свеления о метолах получения и свойствах MMK Al/SiC. Следует отметить, что на данном этапе исследований, авторы не претендуют на полноту представленных в их молели сведений со ссылкой на всех ключевых авторов, работающих в области ММК Al/SiC. В ходе анализа литературных данных заполнялась таблица, содержащая следующие поля: номер записи (1); номер источника первичных данных по списку используемой литературы (2); год выхода публикации (3); страна организации, с которой аффилирован первый соавтор работы (4); температура T [K], при которой производились измерения свойств ММК Al/SiC (5); КТ материала λ [Вт·м⁻¹·K⁻¹] (6); КТЛР δ [ppm/K¹] (7); объёмная доля SiC v [%] (8); относительная плотность полученного материала ρ [%] (9); средний размер частиц добавки SiC χ [мкм] (10); метод формования ММК Al/SiC (11); температура формования Ts [K] (12); давление формования Ps [МПа] (13); продолжительность формования ts [мин] (14); рабочий ток установки І [А], формующей ММК Al/SiC (15); тип данных: экспериментально измеренные или смоделированные и рассчитанные (основная часть этих данных представлена в таблице).

Исходя из структуры таблицы, видно, что можно выделить три основные категории данных: численные, текстовые, отсутствующие. Численные данные приводились к единой размерности и округлялись в процессе внесения в таблицу. В случае указания автором диапазона значений в таблицу вносились в две разные строчки границы диапазона. В случае наличия графических зависимостей, из которых не все оговорены в тексте работы, производилась оцифровка зависимости по нескольким точкам. В рамках работы не выработан подход к внесению данных о бимодальном распределении частиц SiC по размерам ввиду того, что разделение данных на две строки представляется некорректным,

как и указание диапазона, и в результате принято решение указывать в таблице среднее арифметическое значение двух мод распределения частиц по размерам; причём в представленных данных присутствует один подобный источник информации.

Текстовые данные вносились в результате анализа лексико-семантического ядра тематики: к примеру, разные типы пропитки (инфильтрации) – под высоким давлением, в разреженной среде и прочие разновидности («подметоды») – объединялись в единое понятие «Infiltration». При этом осуществлялся поиск общепринятого текстового понятия; так, названия стран приведены в формате двухбуквенного международного классификатора.

При отсутствии тех или иных данных в работе в таблицу вносилась отметка в виде прочерка «-». В случае определения данных, на которых автор не заостряет внимание, но которые очевидным образом следуют из контекста работы, зависимостей и рассужлений в ней, то они вносились в соответствующее поле. К примеру, при отсутствии сведений о температуре MMK Al/SiC, при которой измерялась теплопроводность, принималось значение нормальной комнатной температуры (25°°С), а при приведении экспериментальных зависимостей и аппроксимирующих линий экспериментальные точки вносились в таблицу как «измеренные данные», а точки, определённые по аппроксимированным данным за пределами интервала экспериментальных данных, - как «смоделированные данные».

В результате анализа литературных источников в таблицу исходных данных для построения модели внесены сведения из источников [6–19]. Кроме литературных источников в таблицу исходных данных внесены сведения о проведённых экспериментальных исследованиях по получению MMK Al/SiC методом ИПС с использованием полученного в атмосферной электродуговой плазме [20] SiC (кубическая модификация β SiC, чистота 99 %, средний размер частиц 12 мкм).

Созданная для решения задачи анализа литературных источников визуальная модель (рис. 1–3) служит пространственной реализацией метода параллельных координат, который предлагается применять при визуализации многомерных данных [21]. В со-

¹ 1 ppm = 1 млн⁻¹ или 1 мд. Далее в статье размерность 1/K по умолчанию не указывается.

Рис. 1. Диаграмма многомерных данных, описывающая свойства MMK Al/SiC (КТ и КТЛР) в зависимости от метода формования композита, объёмной доли и среднего размера частиц SiC с указанием года достижения заявленного результата

ответствии с метафорой визуализации, с каждым информативным объектом, содержащим опубликованные сведения об отдельном экспериментальном исследовании, сопоставлен набор точек в пространстве визуальной модели, объединённых в упорядоченный граф. Интерпретация информации, представленной в визуальной модели, использует механизмы визуального сопоставления объектов, а также такие закономерности восприятия, как принципы константности, целостности и обобщённости.

Преимущество предложенной в данной работе визуальной модели – возможность одновременного представления и отображения в воспринимаемом образе данных разного типа, в том числе многомерных или же с отсутствующими значениями некоторых переменных. Возможность интерактивного управления свойствами полученного образа данных позволяет определять/генерировать гипотезу исследования в ходе проведения анализа. Это позволяет многократно эксплуатировать уже построенный образ (визуальную модель) данных, в том числе для получения ответов на новые вопросы.

3. Результаты и обсуждение

3.1. Свойства ММК Al/SiC

На рис. 1 представлена диаграмма многомерных данных, содержащая сведения о свойствах ММК Al/SiC: зависимостях КТ и КТЛР от метода формования композита, объёмной доли и среднего размера частиц Si C. Там же нанесена хронологическая шкала для оценки динамики развития рассматриваемой тематики во времени. Временная шкала диаграммы охватывает послелние 25 лет: в холе анализа распределения данных во времени, в пределах проанализированных работ, можно заключить, что 25 лет назад основным методом формования MMK Al/SiC был метол инфильтрации (в разных его проявлениях в зависимости от давления). В течение последних 15 лет, в пределах проанализированных данных, методу инфильтрационного формования ММК Al/SiC составляет конкуренцию метод ИПС. Видимо, с течением времени относительно редкие до последнего десятилетия установки ИПС всё больше находят применение в получении объёмных ММК.

КТ, согласно анализируемым данным, составляет 40-252 Вт·м⁻¹·К⁻¹, преимущественно 118-252 Вт·м⁻¹·К⁻¹. Этот диапазон выходит за пределы характеристик алюминия, не молифицированного SiC, в сторону большей или меньшей теплопроводности. В этой связи можно заключить, что в рамках представленных анализируемых работ модифицирование алюминия SiC не всегда повышает КТ финальной композиции, очевидно, из-за пористости сформованного ММК Al/ SiC, неравномерности распределения керамической составляющей, её неоптимальных фазового и гранулометрического составов.

В рамках рассматриваемой модели удалось выделить часть рассматриваемого массива данных, соответствуюшую наибольшим значениям КТ: 220-252 Вт·м⁻¹·К⁻¹. Этому диапазону КТ соответствует на других осях ряд данных, которые можно считать оптимальными для достижения максимальных КТ: плотность 99-100 %, объёмная доля SiC 38-70 % и средний размер частиц SiC 100-125 мкм. Совокупность этих параметров определяет наилучшее качество материала по теплопроводности, причём некоторые из параметров могут влиять друг на друга: например, чем выше объёмная доля SiC, тем технически сложней получить объёмный материал с плотностью 99-100 %. При этом, согласно проводимому анализу, часть этих данных – результат расчётов характеристик идеализированного MMK Al/SiC, а часть получена экспериментально.

Следует отметить, что рассматриваемый массив данных, соответствующий наилучшим (наибольшим) расчётным и экспериментальным уровням КТ. соответствует олновременно не наилучшему диапазону значений КТЛР (13-17 ррт). Это свидетельствует о серьёзном недостатке знаний в части оптимизании состава. структуры и, соответственно, свойств ММК Al/SiC. Тем более, что доминирующее большинство расчётных и экспериментальных работ в рассматриваемой области сообщают о свойствах MMK Al/SiC в условиях комнатных температур, что не раскрывает в полной мере потенциал данного композита в условиях термоциклирования в широком диапазоне температур, соответствующем возможным экстремальным условиях эксплуатации MMK Al/SiC.

Выделение массива данных, характеризующихся наименьшим (наилучшим) значением КТЛР (порядка 5-6 ррт), соответствует преимушественно диапазонам КТ 150-170 Вт·м⁻¹·К⁻¹ и объёмной доли SiC 71-100 % (отметим, в рамках рассматриваемой модели, данный диапазон представлен его границами – 70 и 100 %). Кроме того, выделение этого массива соответствует отсутствию данных (преимущественно) о плотности получаемого материала и среднем размере частиц SiC. По совокупности проанализированных данных об основных свойствах ММК Al/SiC можно заключить о невозможности на сегодняшний день достичь максимальной теплопроводности при минимальном тепловом линейном расширении стандартными методами и несовершенстве технологий получения данного композита. В основе этой проблемы, очевидно, лежит взаимосвязь между фазовым и гранулометрическим составами MMK Al/SiC: наибольшее содержание SiC (в пределе, до 100 % доли SiC) обеспечивает наименьший КТЛР, но формование (спекание) материала с доминированием доли SiC при относительно невысоких давлении и температуре не обеспечивает высокого уровня относительной плотности (порядка 99-100 %).

Анализ условий формования приведён в следующем подразделе данной статьи.

3.2. Условия и методы получения MMK Al/SiC

Из анализа диаграммы многомерных данных видно доминирование двух методов формования MMK Al/ SiC: ИПС и инфильтрации.

В рамках метода ИПС типичны температуры спекания от 813 до 883 К при давлениях в диапазоне 40-60 МПА (обычно). При этом типичное время спекания, в рамках этого метода, составляет 5–10 мин. В некоторых случаях применятся давление около 300 МПа при времени спекания до 37 мин. Наибольшие (лучшие) значения КТ в рамках рассматриваемого метода достигнуты именно при наибольшем давлении и наибольшей длительности спекания, но полученные таким образом образцы имеют средние уровни КТЛР: порядка 10–17 ррт. Поэтому можно считать, что на сегодня методом ИПС ещё не реализован потенциал MMK Al/SiC по уровню требуемых указанных свойств.

Методом инфильтрации получено множество экспериментальных образцов. Процесс обычно проходит при больших температурах, 973-1173 К, чем в методе ИПС, при относительно невысоких давлениях: порядка 1-2 МПа, в редких случаях до 10 МПа. Длительность процесса – около 30 мин. Из числа нами рассмотренных можно выделить работу [7], в которой минимальным КТЛР, 5-6 ррт, соответствуют КТ 225–250 Вт. м⁻¹·К⁻¹. Данные образцы получены при наибольшем из рассмотренных давлений, 10 Мпа, и относительно невысокой температуре, 1023 К. Объёмная доля SiC в образце составила около 70 %. Таким образом, в рамках метода инфильтрации, можно считать близкими к оптимальным параметры указанного выше эксперимента. Однако работа [7] имеет ещё ряд особенностей: авторы сначала спекают SiC в непрерывную 3D (объёмную) пористую структуру при 2673 К, и, видимо, поэтому не однозначен вопрос о среднем размере частиц в образце, т.к., по сути, SiC представлен на снимках с растрового микроскопа (в пределах разрешающей способности) в виде непрерывной монолитной структуры; после получения такой структуры поры в образце заполняются расплавленным алюминием при давлении окружающей газовой среды 10 МПа.

Рис. 2. Диаграмма многомерных данных, связывающая условия и методы формования объёмных MMK Al/SiC с основными свойствами материалов (КТ и КТЛР)

Видимо, именно такой подход позволил, с одной стороны, «удержать» наименьшим КТЛР, который обеспечивается «каркасом» из непрерывной целостной (видимо, поликристаллической) материи SiC, поры которой заполняет расплавленный алюминий. В работе [7] не указана относительная плотность образца, возможно, из-за сложности её определения при выбранном подходе к синтезу. Итак, в рамках инфильтрационного метода можно считать возможным достижение отличных характеристик MMK Al/ SiC при низком КТЛР, 5-6 ppm, и КТ до (приблизительно) 250 Вт·м⁻¹·К⁻¹ при доле SiC около 70 %. Однако разновилность ланного метола, обеспечивающая отличные показатели относительна сложна и состоит из нескольких ступеней, ключевую роль в которых играет возможность получения непрерывной объёмной пористой структуры SiC.

3.3. Экспериментальные исследования по получению MMK Al/SiC методом ИПС

Методом ИПС (посредством системы «SPS10–4» производства GT AdvancedTechnologies, США) в рамках настоящей работы были спечены 4 образца ММК Al/SiC с разной массовой долей SiC (2,5, 12,5, 25,0 и 50,0 %). В качестве исходных материалов использовался порошок кубической фазы SiC (β SiC) со средним размером частиц около 12 мкм, а также коммерческий порошок алюминия. SiC был получен в атмосферной

Рис. 3. Диаграмма многомерных данных, связывающая условия и методы формования объёмных MMK Al/SiC с основными свойствами материалов (КТ и КТЛР) для сравнения собственных экспериментальных данных со сведениями из литературных источников

плазме дугового разряда постоянного тока по разработанному в НИУ «ТПУ» методу. Проведено спекание образцов при температуре 833 К в течение 10 мин при давлении 60 МПа. Образцы исследованы с помощью рентгеновского дифрактометра «Shimadzu XRD7000s», растрового электронного микроскопа «Jeol JSM 5700F» и лазерного измерителя теплопроводности «TA Instruments-DLF 1200».

Судя по представленным на рис. З данным в формате визуально-когнитивного анализа, экспериментально получены результаты, соответствующие типичным для метода ИПС: КТ 115–190 Вт·м⁻¹·K⁻¹ у трёх образцов с меньшим содержанием SiC и около 55 Вт·м⁻¹·K⁻¹ у образца с наибольшим содержанием SiC. Такие уровни теплопроводности согласуются с мировыми опубликованным данными с учётом фазового и гранулометрического составов полученных образов, а также – применяемого метода и режимных параметров.

3.4. Оценка возможностей применения теплоотводящих элементов на основе MMK Al/SiC в осветительных приборах по фактически достигаемой теплопроводности

Применяемые для охлаждения светодиодных устройств радиаторы на основе алюминия могут иметь

Основные данные, используемые для построения модели*

Литерат. источник	λ, Βτ·м ⁻¹ ·K ⁻¹	δ , ppm	v, %	ρ, %	χ, мкм	Метод формования	Ts, K	<i>Ps</i> , МПа	<i>ts</i> , мин
[6]	210	24	0	99 98	_	-	_	-	_
	239	17	40						
	247	15	45						
	252	14	50		110	ИПС	873	300	37
	246	13	55						
	208	12	60						
	-	10	70	_	_				
	-	5	100	_	_				
	182	9	46	_	_	- - - -		10	-
	250	7	54	_	_				-
[7]	250	6	63	_	_				_
	225	5	70	_	_				_
	140	10	46	-			10	-	
	175	9	54	_	_		1023		-
	180	8	63	_	_				_
	170	7	70	-	-				-
	130	11,2	- 50	99	23	Hot press		55	15
	135	11,6		99	38				
[8]	141	12,1		97	75				
	140	10,8		99	23				
	148	11,2		99	38				
	156	11,5		97	75				
[9]	38,5	-	50,4	97	8		_	_	-
	50,6	_	52,7	98	11	Plasma manin	_	_	-
	69,8	-	51,6	98	17	Plasma spraying	_	_	-
	71,4	_	38,8	99	30		_	_	-

КТ 150–200 Вт·м⁻¹·К⁻¹ [22, 23], а современные отечественные и зарубежные теплоотводящие элементы на основе ММК Al/SiC – 150–170 Вт·м⁻¹·К⁻¹ (ряд зарубежных – до 200 Вт·м⁻¹·К⁻¹) [15]. При этом набольшие достигнутые КТ образцов ММК Al/SiC, по изученным литературным источникам, составляют 220–252 Вт·м⁻¹·К⁻¹,

что выше, чем у типичных алюминиевых радиаторов, применяемых для охлаждения СД. Такой уровень теплопроводности позволяет обеспечивать надёжную и долговечную работу единичного СД с мощностью 50 Вт или группы плотноупакованных СД мощностью 3 Вт каждый [22, 23]. Соответственно, теплоотводящие элементы на основе ММК Al/SiC вполне подходят для использования в ОП с СД. Кроме того, относительно низкий КТЛР высоконаполненных ММК Al/SiC позволит применять устройства на их основе в экстремальных диапазонах термоциклирования. Например, в условиях Арктики.

Продолжение таблицы

Литерат. источник	λ, Вт·м ⁻¹ ·К ⁻¹	δ, ppm	v, %	ρ, %	χ, мкм	Метод формования	Ts, K	<i>Ps</i> , МПа	ts, мин
	153	-	_	_	0,3		973	0,4	-
	155	-	-	_					_
	154	_	_	-					-
[10]	156	_	_	-					-
	157	-	-	_					_
	162	-	_	-					-
	163	-	_	-					-
	200	23	0	_	_		_	-	-
	170	16,4	25	-	_		_	-	-
[11]	135	10,4	55	-	_		_	-	-
	105	6,2	70	-	_		-	-	-
	80	5	100	-	_		_	-	-
	221	-	58	-	167	Инфильтрация	1023	0,28	30
	209	-	58	-	86,4			0,34	
[12]	203	-	60	_	56,8			0,40	
	204	-	59	-	37,1			0,50	
	194	-	58	-	23,4			0,60	
	193	-	55	-	16,9			0,78	
	154	-	53	-	8,9			2,1	
	190	-	0	-		100	-	-	-
[13]	225	-	70	-	100		-	-	-
	237	-	70	-			_	-	-
	180	-	-	_	20		-	-	-
	210	-	-	-	50		-	-	-
	220	-	-	-	200		-	-	-
	208	-	55	100	- 40	— ИПС	833	50	5
	211	-	60	100			833	50	
[14]	204	-	58	97,4			833	45	
	185	-	56	92,8			833	40	
	192	-	56	93,7			823	45	
	165	-	53	87,5			813	40	
	220	_	50	100	- 100		833	50	
	224	_	55	100			833	50	
	208	_	58	96,3			833	45	
	197	_	55	91,2			823	40	
	181		53	88,7			813	45	
	173	_	52	86,6			813	40	

Окончание таблицы

Литерат. источник	λ, Вт·м ⁻¹ ·К ⁻¹	δ, ppm	v, %	ρ, %	χ, мкм	Метод формования	Ts, K	Ps, MПa	ts, мин
	158	4,97	70	_	125	Инфильтрация	_	_	_
	162	5,14		_			_	_	_
[15]	161	5,32		_			_	_	_
	156	_		_			_	_	_
	154	5,97		_			_	-	_
	150	6,31		_			_	-	_
	149	-		-			-	_	_
	177	9,5	50	98,9	48	Casting			-
	172	7,89	58	99,3	48				_
[16]	138	7,74	71	97,5	28**			50	_
	125	6,33	71	97,8					_
	123	6,54	71	97,1]				_
[17]	165	9,2	70	_	40		- 1073	100	_
	190	10	50	-	28	Инфильтрация 1173		50	-
	125	7,5	70	-	28				_
F101	150	6		99,5	-				-
[10]	140			99	-				_
	135	7,5		98	-				-
	120			97	-				_
	146	10,5	39	99 6	6			-	
[19]	136	9,24	52				1173	0,1	_
	118	8,45	62						-
_	188	_	0	98			883	60	
_	120	_	16,9	96	- 12				10
	131	_	21,4	97		MIC			10
_	54	_	53,6	86					

*Данные в таблице могут отличаться от приведённых в первоисточниках из-за перевода в единую систему размерностей, округления и внесения в таблицу ряда данных, являющихся умозаключением авторов данной работы на основе анализа первооисточника. ** Приведённое значение – среднее арифметическое максимумов бимодального распределения частиц по размерам.

4. Заключение

В данной работе проведены сбор, систематизация и анализ литературных источников, касающихся методов получения и свойств ММК Al/ SiC, а также характеристик теплоотводящих элементов ОП с СД. Особенность данного исследования – подход, основанный на визуально-когнитивной модели, содержащей массив многомерных разнородных текстовых и числовых данных. Созданная визуальная модель позволила: 1) отобразить многопараметрические гетерогенные данные с применением когнитивного потенциала пользователя; 2) выявить особенности наиболее распространённых методов синтеза MMK Al/SiC (в пределах имеющихся литературных источников), режимных параметров формования, а также фазовых и гранулометрических составов, обеспечивающие наилучшие результаты по КТ и КТЛР. В состав модели также вошли данные, полученные в ходе экспериментального исследования MMK Al/SiC, подтвердившего основные литературные данные. Более того, визуальная модель позволила сформулировать новые гипотезы для исследования методов получения и свойств MMK Al/SiC. На сегодня авторы не знают примеров подобного подхода к обработке, анализу и хранению данных о тех или иных материалах, их свойствах, методах и режимных параметрах их получения. Они также считают метод визуальнокогнитивного моделирования применимым к решению поисковых аналитических задач в разных предметных областях.

Работа выполнена при финансовой поддержке Российского научного фонда, проект № 18–11–00215.

СПИСОКЛИТЕРАТУРЫ

1. Nardelli A. et al. Assessment of Light Emitting Diodes technology for general lighting: A critical review // Renewable and Sustainable Energy Reviews.– 2017.– № 75. – P. 368–379.

2. *Luo X. et al.* Heat and fluid flow in high-power LED packaging and applications // Progress in Energy and Combustion Science. -2016. N 56. - P. 1–32.

3. Xiangzhao Zhang et al. Review on Brazing of High Volume Faction SiCp/Al Composites for Electronic Packaging Applications // Rare Metal Materials and Engineering.- 2017.- № 46(10). - P. 2812-2819.

4. Коновалов А.В., Смирнов С.В. Современное состояние и направления исследований металломатричных композитов системы Al/SiC // Конструкции из композиционных материалов. – 2015. – № 1(137). – С. 30–35.

5. Zakharova A.A., Vekhter E.V., Shklyar A.V., Pak A.J. Visual modeling in an analysis of multidimensional data // Journal of Physics: Conf. Series.– 2018. – Vol. 944. – P. 1–5.

6. *Mizuuchi K. et al.* Processing of Al/SiC composites in continuous solid–liquid co-existent state by UIIC and their thermal properties // Composites: Part B.– 2012.– № 43. – P. 2012–2019.

7. Li S. et al. Thermophysical properties of SiC/Al composites with three dimensional interpenetrating network structure // Ceramics International. -2014. - N = 40. - P. 7539–7544.

8. *Fei Teng et al.* Microstructures and properties of Al-50 % SiC composites for electronic packaging applications // Trans. Nonferrous Met. Soc. China.– 2016.– № 26. – P. 2647–2652.

9. Gui M. et al. Thermal conductivity of Al–SiCp composites by plasma spraying // Scripta Materialia.– $2005.- \mathbb{N} 52. - P. 51-56.$

10. Nong X.D. et al. Numerical analysis of novel SiC3D/Al alloy co-continuous composites ventilated brake disc // International Journal of Heat and Mass Transfer.– 2017.– N 108. – P. 1374–1382.

11. Zweben C. Metal·Matrix Composites for Electronic Packaging // JOM.– 1992. – P. 15–23. 12. Molina J.M. et al. Thermal conductivity of Al–SiC composites with monomodal and bimodal particle size distribution // Materials Science and Engineering A.– 2008.– $N_{\rm P}$ 480. – P. 483–488.

13. *Hong Guo et al.* Microstructure and thermophysical properties of SiC/Al composites mixed with diamond // Trans. Nonferrous Met. Soc. China.– 2015.– № 25.– P. 170–174.

14. Chu K. et al. Thermal conductivity of spark plasma sintering consolidated SiCp/Al composites containing pores: Numerical study and experimental validation // Composites: Part A. $-2010 - N \ge 41 - P. 161 - 167$.

15. Каблов Е.Н., Щетанов Б.В., Шавнёв А.А., Няфкин А.Н., Чибиркин В.В., Елисеев В.В. Свойства и применение высоконаполненного метелломатричного композиционного материала Al-SiC // Вестник нижегородского университета им. Н.И. Лобачевского.– 2011.– № 3(1). – С. 56–59.

16. *Hyo S. Lee et al.* Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications // Journal of materials science.– $2000.- N_{\odot} 35. - P. 6231-6236.$

17. Qiang Zhang et al. Thermal properties of a high volume fraction SiC particle-reinforced pure aluminum composite // Phys. stat. sol. (a). $-2005 - N_{\odot} \cdot 202(6) - P \cdot 1033 - 1040$.

18. Lee H.S., Hong S.H. Pressure infiltration casting process and thermophysical properties of high volume fraction SiCp/Al metal matrix composites // Materials Science and Technology.– 2003.– № 19(8). – P. 1057–1064.

19. Junwu Liu at al. Pressureless infiltration of liquid aluminum alloy into SiC preforms to form near-net-shape SiC/Al composites // Journal of Alloys and Compounds.– 2008.– № 465. – P. 239–243.

20. Pak A. Ya., Rudmin M.A., Mamontov G. Ya. Bolotnikova O.A. Electroarc Synthesis and Cleaning from Carbon Impurities of Cubic Silicon Carbide in the Air Atmosphere Journal of Superhard Materials.– 2018.– $N_{\rm D}$ 40(3). – P. 157–163.

21. Zakharova A.A, Shklyar A.V. Basic principles of data visual models construction, by the example of interactive systems for 3D visualization // Scientific Visualization.– 2014.– \mathbb{N} 6(2). – P. 62–73.

22. *K. Ben Abdelmlek et al.* Optimization of the thermal distribution of multi-chip LED package // Applied Thermal Engineering.-2017.- № 126. - P. 653-660.

23. Y. Wang et al. Heat dissipation of high-power light emitting diode chip on board by anovel flat plate heat pipe // Applied Thermal Engineering. -2017. $-N_{\rm P}$ 123. -P. 19–28.

Пак Александр

Яковлевич, кандидат техн. наук. Окончил в 2011 г. ТПУ. Доцент Отделения автоматизации и робототехники и начальник Орга-

низационного отдела Инженерной школы информационных технологий и робототехники НИУ «ТПУ». Область научных интересов: порошковые и композитные материалы, сбор и анализ литературных данных, анализ многомерных данных, электродуговой синтез

Захарова Алёна Александровна,

доктор техн. наук, доцент. Окончила в 1994 г. ТПУ. Профессор Отделения автоматизации и робототехники Инженерной шко-

лы информационных технологий и робототехники НИУ «ТПУ». Область научных интересов: анализ многомерных данных, 3D-моделирование, промышленный дизайн

Шкляр Алексей Викторович,

инженер. Окончил в 1994 г. ТПУ. Старший преподаватель Отделения автоматизации и робототехники Инженерной шко-

лы информационных технологий и робототехники НИУ «ТПУ». Область научных интересов: когнитивная визуализация, компьютерная графика, интерпретация многомерных данных, визуальное восприятие

Пак Татьяна Александровна,

инженер. Окончила в 2011 г. ТПУ. Инженер Отделения автоматизации и робототехники Инженерной школы информацион-

ных технологий и робототехники НИУ «ТПУ». Область научных интересов: электродуговые процессы, сварка, порошковые материалы