1. Pandharipande, A., Thijssen, P. Connected Street Lighting Infrastructure for Smart City Applications // IEEE Internet of Things Magazine, 2019, Vol. 2, # 2, pp. 32–36.
2. Shahzad, G., Yang, H., Ahmad, A.W., Lee, C. Energy-Efficient Intelligent Street Lighting System Using Traffic-Adaptive Control // IEEE Sensors Journal, 2016, Vol. 16, # 13, pp. 5397–5405.
3. Beccali, M., Bonomolo, M., Leccese, F., Lista, D., Salvadori, G. On the impact of safety requirements, energy prices and investment costs in street lighting refurbishment design // Energy, 2018, 165, pp. 739–759.
4. Tukymbekov, D., Saymbetov, A., Nurgaliyev, M., Kuttybay, N., Dosymbetova, G., Svanbayev, Y. Intelligent autonomous street lighting system based on weather forecast using LSTM // Energy, 2021, # 231, p. 120902.
5. Andrei, H., Cepisca, C., Dogaru-Ulieru, V., Ivanovici, T., Stancu, L., Andrei, P.C. Measurement analysis of an advanced control system for reducing the energy consumption of public street lighting systems // In IEEE Bucharest Powertech Innovative Ideas Toward Electric Power and Energy Systems of the Future, 2009, pp. 2–7.
6. Blöbaum, A., Hunecke, M. Perceived danger in urban public space: The impacts of physical features and personal factors // Environment and Behaviour, 2005, Vol. 37, # 4, pp. 465–486.
7. Haans, A., de Kort, Y.A.W. Light distribution in dynamic street lighting: Two experimental studies on its effects on perceived safety, prospect, concealment, and escape // Journal of Environmental Psychology, 2012, Vol. 32, # 4, pp. 342–352.
8. Haitz, R., Tsao, J.Y. Solid-state lighting: ‘The case’ 10 years after and future prospects // Physica Status Solidi (A), 2011, Vol. 208, # 1, pp. 17–29.
9. Müllner, R., Riener, A. An energy efficient pedestrian aware Smart Street Lighting system // International Journal of Pervasive Computing and Communications, 2011, Vol. 7, # 2, pp. 147–161.
10. Tsao, J.Y., Saunders, H.D., Creighton, J.R., Coltrin, M.E., Simmons, J.A. Solid-state lighting: An energy-economics perspective // Journal of Physics D: Applied Physics, 2010, Vol. 43, # 35, 354001 p.
11. Juntunen, E., Myöhänen, P., Tetri, E., Tapaninen, O., Ojalehto, J., Heikkinen, V. Rapid prototyping of freeform optics for an LED downlighter with a dynamically adjustable beam // Lighting Research and Technology, 2016, Vol. 48, # 7, pp. 885–897.
12. Gil-De-Castro, A., Moreno-Munoz, A., Larsson, A., De La Rosa, J.J.G., Bollen, M.H.J. LED Street lighting: A power quality comparison among street light technologies // Lighting Research and Technology, 2013, Vol. 45, # 6, pp. 710–728.
13. Meana-Llorián, D., González García, C., Pelayo G-Bustelo, B.C., Cueva Lovelle, J.M., Garcia-Fernandez, N. IoFClime: The fuzzy logic and the Internet of Things to control indoor temperature regarding the outdoor ambient conditions // Future Generation Computer Systems, 2017, # 76, pp. 275–284.
14. Atzori, L., Iera, A., Morabito, G. The Internet of Things: A survey // Computer Networks, 2010, Vol. 54, # 15, pp. 2787–2805.
15. Bellavista, P., Cardone, G., Corradi, A., Foschini, L. Convergence of MANET and WSN in IoT urban scenarios // IEEE Sensors Journal, 2013, Vol. 13, # 10, pp. 3558–3567.
16. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M. Internet of things for smart cities // IEEE Internet of Things Journal, 214, Vol. 1, # 1, pp. 22–32.
17. Lau, S.P., Merrett, G.V., Weddell, A.S., White, N.M. A traffic-aware street lighting scheme for Smart Cities using autonomous networked sensors // Computers & Electrical Engineering, 2015, # 45, pp. 192–207.
18. Chen, Z., Sivaparthipan, C.B., Muthu, B.A. IoT based smart and intelligent smart city energy optimization // Sustainable Energy Technologies and Assessments, 2022, Vol. 49, 101724 p.
19. García-Castellano, M., González-Romo, J.M., Gómez-Galán, J.A., García-Martín, J.P., Torralba, A., Pérez-Mira, V. ITERL: A Wireless Adaptive System for Efficient Road Lighting // Sensors, 2019, Vol. 19, # 23, 5101 p.
20. Mary, M.C.V.S., Devaraj, G.P., Theepak, T.A., Pushparaj, D.J., Esther, J.M. Intelligent energy efficient street light controlling system based on IoT for smart city // In Proceedings of the International Conference on Smart Systems and Inventive Technology (ICSSIT), 2018, pp. 551–554.
21. Escolar, S., Carretero, J., Marinescu, M. C., Chessa, S. Estimating energy savings in smart street lighting by using an adaptive control system // International Journal of Distributed Sensor Networks, 2014.
22. Doulos, L.T., Sioutis, I., Kontaxis, P., Zissis, G., Faidas, K. A decision support system for assessment of street lighting tenders based on energy performance indicators and environmental criteria: Overview, methodology and case study // Sustainable Cities and Society, 2019, Vol. 51, 101759 p.
23. Sánchez-Sutil, F., Cano-Ortega, A. Smart regulation and efficiency energy system for street lighting with LoRa LPWAN // Sustainable Cities and Society, 2021, Vol. 70, 102912 p.
24. Juntunen, E., Sarjanoja, E. M., Eskeli, J., Pihlajaniemi, H., Österlund, T. Smart and dynamic route lighting control based on movement tracking // Building and Environment, 2018, Vol. 142, pp. 472–483.
25. Mouaadh, Y., Bousmaha, B., Mhamed, R. Intelligent control and reduce energy consumption of smart street lighting system // International Journal of Power Electronics and Drive Systems, 2022, Vol. 13, # 4, pp. 1966–1974.
26. Abekiri, N., Rachdy, A., Ajaamoum, M., Nassiri, B., Elmahni, L., Oubail, Y. Platform for hands-on remote labs based on the ESP32 and NOD-red // Science in Africa, 2023, Vol. 19, e01502 p.
27. Babiuch, M., Foltynek, P., Smutny, P. Using the ESP32 microcontroller for data processing // In 20th International Carpathian Control Conference (ICCC), 2019, pp. 1–6.
28. Matilla, D. M., Murciego, Á.L., Jiménez-Bravo, D.M., Mendes, A.S., Leithardt, V.R.Q. Low-cost Edge Computing devices and novel user interfaces for monitoring pivot irrigation systems based on Internet of Things and LoRaWAN technologies // Biosystems Engineering, 2022, Vol. 223, pp. 14–29.
29. Aghenta, L.O., Iqbal, M.T. Low-cost, open-source IoT-based SCADA system design using thinger.IO and ESP32 thing // Electronics, 2019, Vol. 8, # 8, pp. 1–24.
30. Macheso, P.S., Thotho, D. ESP32 Based Electric Energy Consumption Meter // International Journal of Computer Communications and Informatics, 2022, Vol. 4, # 1, pp. 23–35.
31. Abubakar, I., Khalid, S.N., Mustafa, M.W., Shareef, H., Mustapha, M. Calibration of ZMPT101B voltage sensor module using polynomial regression for accurate load monitoring // ARPN Journal of Engineering and Applied Sciences, 2017, Vol. 12, # 4, pp. 1076–1084.
32. Sánchez-Sutil, F., García-Cumbreras, M.A., Sánchez-Sutil, F., Hernández, J.C. Development and calibration of an open-source, low-cost power smart meter prototype for PV household-prosumers // Electronics, 2019, Vol. 8, # 8, pp. 33–37.
33. Cano-Ortega, A., García-Cumbreras, M.A., Sánchez-Sutil, F., Hernández, J.C. A Platform for Analysing Huge Amounts of Data from Households, Photovoltaics, and Electrical Vehicles: From Data to Information // Electronics, 2022, Vol. 11, # 23.
34. Nettikadan, D., Raj, S. Smart Community Monitoring System using Thingspeak IoT Platform // International Journal of Applied Engineering Research, 2018, Vol. 13, pp. 13402–13408.
35. Mineraud, J., Mazhelis, O., Su, X., Tarkoma, S. A gap analysis of Internet-of-Things platforms // Computer Communications, 2016, Vol. 89, pp. 5–16.
36. Viliūnas, V., Vaitkevičius, H., Stanikūnas, R., Vitta, P., Bliumas, R., Auškalnytė, A., Žukauskas. Subjective evaluation of luminance distribution for intelligent outdoor lighting // Lighting Research & Technology, 2014, Vol. 46, # 4, pp. 421–433.
Подробнее