Содержание
Иллюстрации - 5
Таблицы и схемы - 5
Светлота в условиях дневного зрения: психофизическое моделирование посредством сигналов синечувствительных фоторецепторов сетчатки «СВЕТОТЕХНИКА», 2020, № 4

Журнал «Светотехника» №4

Дата публикации 17/08/2020
Страница 32-44

Купить PDF - ₽400

Светлота в условиях дневного зрения: психофизическое моделирование посредством сигналов синечувствительных фоторецепторов сетчатки «СВЕТОТЕХНИКА», 2020, № 4
Авторы статьи:
Петер Бодроги (Peter Bodrogi), Сюэ Го (Xue Guo), Тран Куок Кхан (Tran Quoc Khanh)

Петер Бодроги (Peter Bodrogi), Ph. D., Dr. Sc. Окончил Университет им. Лорана Этвуша (Будапешт). Научный сотрудник Дармштадского технического университета. Область научных интересов: светотехника, освещение в условиях сумеречного зрения, колориметрия, наука о цвете, зрительная оптимизация дисплеев и СД осветительных установок

Сюэ Го (Xue Guo), M. Sc. C 2016 года по 2018 год работала научным сотрудником в Светотехнической лаборатории Технического университета Дармштадта, Германия. В настоящее время работает в компании TÜV SÜD Product Service GmbH в качестве продакт-специалистапо светильникам и светотехническим измерениям

Тран Куок Кхан (Tran Quoc Khanh), Ph. D., Dr. Sc., профессор. Окончил технический университет Ильменау. Декан факультета электротехники и информационных технологий Дармштадтского технического университета. Председатель проводящихся в Дармштадте международных симпозиумов по автомобильному освещению (ISAL), член нескольких технических комитетов МКО. Автор целого ряда книг, научных публикаций и патентов в области светотехники. Область научных интересов: СД освещение

Аннотация
Был проведён наглядный психофизический эксперимент и исследовано восприятие светлоты большого однородного поля зрения (41°). Испытуемые оценивали светлоту двадцати световых стимулов разной цветности при двух уровнях яркости: Lv = 267,6 кд/м2 и Lv = 24,8 кд/м2. Полученные средние значения по субъективной шкале визуальной светлоты были смоделированы с помощью комбинации сигналов, генерируемых при возбуждении фоторецепторов: колбочек S-типа, палочек, светочувствительных ганглиозных клеток сетчатки (ipRGCs) и разности сигналов колбочек L-типа и M-типа. Новая величина – «относительное содержание синего в спектре» – также рассматривалась к моделированию. Эта величина была определена как «спектральная плотность энергетической яркости светового стимула, отнесённая к малому спектральному интервалу (380–520) нм в данном направлении в заданной точке». Модель «относительного содержания синего в спектре» может с достаточной точностью описывать субъективное восприятие светлоты наблюдателями.
Список использованной литературы
1. Commission Internationale de l’Éclairage. e-ILV. Available from http://eilv.cie.co.at/, 2014.
2. Rea MS. The what and the where of vision lighting research. // Lighting Research and Technology 2018; 50: 14–37.
3. Stiles WS. The Eye, Brightness and Illuminating Engineering. // Transactions of the Illuminating Engineering Society 1952; 17: 241–264.
4. Robinson W. Brightness Engineering. A.M.I.E.E. //Transactions of the Illuminating Engineering Society 1951; 16: 61–85.
5. Fotios SA, Cheal C. Predicting lamp spectrum effects at mesopic levels. Part 1: Spatial brightness. // Lighting Research and Technology 2011; 43:143–157.
6. Rea MS, Bullough JD, Brons JA. Parking lot lighting based upon predictions of scene brightness and personal safety. // Lighting Research and Technology 2015; 49: 293–304.
7. Fotios S, Atli D. Comparing Judgments of Visual Clarity and Spatial, Brightness through an Analysis of Studies Using the Category Rating Procedure. // LEUKOS2012; 8: 261–281.
8. Jones LA. Colorimetry: Preliminary Draft of a Report on Nomenclature and Definitions. // Journal of the Optical Society of America 1937; 27: 207–211.
9. Optical Society of America, Committee on Colorimetry. The Science of Color. New York, USA: Crowell, 1953.
10. Boyce P. Editorial: The paradox of photometry. // Lighting Research and Technology 2015; 47: 767.
11. Berman SM, Jewett DL, Fein G, Saika G, Ashford F. Photopic luminance does not always predict perceived room brightness. // Lighting Research and Technology 1990; 22: 37–41.
12. Fotios SA. Lamp colour properties and apparent brightness: a review. // Transactions of the Illuminating Engineering Society 2001; 33: 163–178.
13. Fotios SA, Levermore GJ. Chromatic effect on apparent brightness in interior spaces III: Chromatic brightness model. // International Journal of Lighting Research and Technology 1998; 30: 107–110.
14. Besenecker UC, Bullough JD. Investigating visual mechanisms underlying scene brightness. // Lighting Research and Technology 2016; 49: 16–32.
15. Rea MS, Radetsky LC. Toward a model of outdoor lighting scene brightness. // Lighting Research and Technology 2011; 43: 7–30.
16. Vidovszky-Németh A, Schanda J. White light brightness–luminance relationship. // Lighting Research and Technology 2012; 44: 55–68.
17. Fotios S, Levermore GJ. Perception of electric light sources of different colour properties. // International Journal of Lighting Research and Technology 1997; 29: 161–171.
18. Nayatani Y. A colorimetric explanation of the Helmholtz–Kohlrausch effect. // Color Research and Application 1998; 23: 374–378.
19. Burns SA, Smith VC, Pokorny J, Elsner AE. Brightness of equal-luminance lights. // Journal of the Optical Society of America 1982; 72: 1225–1231.
20. Fotios SA, Levermore GJ. Chromatic effect on apparent brightness in interior spaces, II: SWS lumens model. // Lighting Research and Technology 1998; 30: 103–106.
21. Smith VC, J. Pokorny J. Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. // Vision Research 1975; 15: 161–171.
22. Commission Internationale de l’Éclairage. Publ. CIE118–1995. // CIE Collection in Colour and Vision 118/2, 1995. Models of heterochromatic brightness matching.
23. Guth SL, Massof RW, Benzschawel T. Vector model for normal and dichromatic color vision. // Journal of the Optical Society of America 1980; 70: 197–212.
24. Yaguchi H, Ikeda M. Subadditivity and superadditivity in heterochromatic brightness matching. // Vision Research 1983; 23: 1711–1718.
25. Kokoschka S, Bodmann HW. Ein konsistentes System zur photometrischen Stralungsbewertung im gesamten Adaptationsbereich. // In: Proceedings of the CIE18th Session, London, 1975.
27. Stockman A, Sharpe LT. Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype. // Vision Research 2000; 40: 1711–1737.
28. Stockman A, Sharpe LT, Fach CC. The spectral sensitivity of the human short-wavelength cones. // Vision Research 1999; 39: 2901–2927.
29. Rea MS, Figueiro MG, Bierman A, Bullough JD. Circadian light. // Journal of Circadian Rhythms 2010; 8: 1–10.
30. Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J, Yau KW, Gamlin PD. Melanopsin-expressing ganglion cells in primate retina signal color and irradiance and project to the LGN. // Nature 2005; 433: 749–754.
31. Commission Internationale de l’Éclairage. Publ. // CIE212–2014. Guidance towards Best Practice in Psychophysical Procedures Used when Measuring Relative Spatial Brightness, 2014.
32. Ichikawa H, Tanabe S, Hukami K. Standard Pseudoisochromatic Plates for Acquired Color Vision Defects, Part II. // Tokyo, Japan: Igaku-Shoin Medical Publishers, 1983.
33. Lanthony P. The desaturated panel d‑15. // Documenta Ophthalmologica 1978; 46: 185–189.
34. Costa M, Gaddi C. Color Name Distances Scaled by Thurstone’s Ranking Order Psychophysical Method. Journal of Vision 2016; 16: 824.
35. Fisher RA. On the Probable Error of a Coefficient of Correlation Deduced from a Small Sample. // Metron 1921; 1: 3–32.
36. Ikeda M, Ikeda J, Ayama M. Specification of individual variation in luminous efficiency for brightness. // Color Research and Application 1992; 17: 31–44.
37. Kimura-Minoda T, Kojima Sh, Fujita Y, Ayama M. Study on Glare of LED lamp and Individual Variations of Brightness Perception. // In: Proceedings of the ISAL 7th International Symposium on Automotive Lighting, 2007.
38. Nayatani Y, Sobagaki H. Causes of individual differences on brightness/luminance (B/L) ratios. // Journal of Light and Visual Environment 2003; 27: 30–34.
39. Yaguchi H, Kawada A, Shioiri S, Miyake Y. Individual differences of the contribution of chromatic channels to brightness. // Journal of the Optical Society of America 1993; 10: 1373–1379.
40. Fotios SA, Cheal C. Brightness matching with visual fields of different types. // Lighting Research and Technology 2010; 43: 73–85.
41. Fotios S, Atli D, Cheal C, Hara N. Lamp spectrum and spatial brightness at photopic levels: Investigating prediction using S/P ratio and gamut area. // Lighting Research and Technology 2014; 47: 595–612.
42. Sharpe LT, Stockman A, Jagla W, Jägle H. A luminous efficiency function, V*(λ), for daylight adaptation. // Journal of Vision 2005; 5: 948–968.
43. Rinner O, Gegenfurtner KR. Time course of chromatic adaptation for color appearance and discrimination. // Vision Research 2000; 40: 1813–1826.
44. Wong KY, Dunn FA, Berson DM. Photoreceptor Adaptation in Intrinsically Photosensitive Retinal Ganglion Cells. // Neuron 2005; 48:1001–1010.
45. Rea MS. The Trotter Paterson Lecture 2012: Whatever happened to visual performance?. // Lighting Research and Technology 2012; 44: 95–108.
46. Land EH, McCann JJ. Lightness and Retinex Theory. // Journal of the Optical Society of America 1971; 61: 1–11.
47. Yamakawa M, Tsujimura S, Okajima K. A quantitative analysis of the contribution of melanopsin to brightness perception. // Scientific Reports 2019; 9:7568, https://doi.org/10.1038/s41598–019–44035–3.
Ключевые слова
Выберите вариант доступа к этой статье

Купить

Рекомендуемые статьи