Содержание
Иллюстрации - 3
Таблицы и схемы - 2
Модель переноса излучения на основе метода дискретных ординат с вычислением собственных значений с помощью нейронной сети: доказательство концепции «СВЕТОТЕХНИКА», 2021, № 1

Журнал «Светотехника» №1

Дата публикации 22/02/2021
Страница 64-68

Купить PDF - ₽450

Модель переноса излучения на основе метода дискретных ординат с вычислением собственных значений с помощью нейронной сети: доказательство концепции «СВЕТОТЕХНИКА», 2021, № 1
Авторы статьи:
Ефременко Дмитрий Сергеевич

Ефременко Дмитрий Сергеевич, доктор техн. наук (2017 г., НИУ «МЭИ»). Окончил в 2009 г. МЭИ. Научный сотрудник Института дистанционного зондирования (IMF) Немецкого центра авиации и космонавтики (DLR) (с 2011 г.), приватдоцент Мюнхенского технического университета (с 2020 г.). В 2017 г. получил премию «Elsevier/JQSRT Goody Award». Имеет свыше 70 научных работ. Область научных интересов: перенос излучения, численные методы и машинное обучение

Аннотация
Искусственные нейронные сети находят всё большее применение в разных приложениях. Они используются в качестве «универсальных аппроксиматоров», заменяющих сложные вычислительные алгоритмы относительно простыми последовательностями функций, имитирующих реакцию нейронов на входной сигнал. Нейронные сети доказали свою эффективность в параметризации вычислительно трудоёмких моделей переноса излучения (МПИ) в задачах дистанционного зондировании атмосферы. Хотя прямое замещение МПИ нейронными сетями может приводить к многократному повышению производительности, такой подход имеет определённые недостатки, такие как потеря общности, проблемы с устойчивостью и т.д. При этом нейронная сеть обычно обучается для конкретного приложения, например, для заранее определённых атмосферных сценариев и заданного спектрометра. В данной работе рассматривается новая концепция нейросетевых МПИ, в которой нейронная сеть заменяет не всю модель целиком, а только её часть (алгоритм расчёта собственных значений), тем самым сокращая общее время вычислений при сохранении общности МПИ. Из обучения исключаются зависимости от геометрии наблюдения и оптической толщины среды. В работе показано, что, несмотря на небольшой коэффициент ускорения этого метода (примерно 3 раза против 103 у других нейросетевых моделей), результирующая нейронная сеть относительно легко и быстро обучаема и может использоваться для произвольного количества атмосферных слоёв. Более того, этот подход может использоваться в сочетании с любыми МПИ, основанными на методе дискретных ординат. В работе рассматривается применение нейронной сети для моделирования функции отражения в полосе Хаггинса (310–335 нм).
Список использованной литературы
1. Levit G.S., Krumbein W.E., Grübel R. Space and Time in the Works of V.I. Vernadsky // Environmental Ethics. – 2000. – Vol. 22, No. 4. – P. 377–396.
2. Катаев М.Ю., Лукьянов А.К. Моделирование отражённого солнечного излучения для оценки газового состава атмосферы при оптическом дистанционном зондировании из космоса // Светотехника. – 2017. – № 6. – С. 50–55.
3. Veefkind J.P. Aben I., McMullan K. et al. TROPOMI on the ESA Sentinel‑5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications // Remote Sensing of Environment. – 2012. – Vol. 120. – P. 70–83.
4. Cybenko G. Approximation by superpositions of a sigmoidal function // Mathematics of Control, Signals, and Systems. – 1989. – Vol. 2, No. 4. – P. 303–314.
5. Hornik K. Approximation capabilities of multilayer feedforward networks // Neural Networks. – 1991. – Vol. 4, No. 2. – P. 251–257.
6. Key J.R., Schweiger A.J. Tools for atmospheric radiative transfer: Streamer and FluxNet // Computers & Geosciences. – 1998. – Vol. 24, no. 5. – Pp. 443–451.
7. Loyola D.G. Applications of neural network methods to the processing of earth observation satellite data // Neural Networks. – 2006. – Vol. 19, No. 2. – P. 168–177.
8. Loyola D.G., Gimeno García S., Lutz R. et al. The operational cloud retrieval algorithms from TROPOMI on board Sentinel‑5 Precursor // Atmospheric Measurement Techniques. – 2018. – Vol. 11, No. 1. – P. 409–427.
9. Bue B.D., Thompson D.R., Deshpande S. et al. Neural network radiative transfer for imaging spectroscopy // Atmospheric Measurement Techniques. – 2019. – Vol. 12, No. 4. – P. 2567–2578.
10. Mouroulis P., Van Gorp B., Green R.O. et al. Portable Remote Imaging Spectrometer coastal ocean sensor: design, characteristics, and first flight results // Applied Optics. – 2014. – Vol. 53, No. 7. – P. 1363–1380.
11. Chandrasekhar S. Radiative transfer. – New York: Dover Publications Inc.,1950.
12. Budak V.P., Klyuykov D.A., Korkin S.V. Complete matrix solution of radiative transfer equation for PILE of horizontally homogeneous slabs // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2011. – Vol. 112, No. 7. – P. 1141–1148.
13. Afanas’ev V.P., Basov A. Yu., Budak V.P. et al. Analysis of the Discrete Theory of Radiative Transfer in the Coupled OceanAtmosphere System: Current Status, Problems and Development Prospects // Journal of Marine Science and Engineering. – 2020. – Vol. 8, No. 3. – P. 202.
14. Efremenko D.S., Molina García V., Gimeno García S., Doicu A. A review of the matrix-exponential formalism in radiative transfer // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2017. – Vol. 196. – P. 17–45.
15. Plass G.N., Kattawar G.W., Catchings F.E. Matrix Operator Theory of Radiative Transfer 1: Rayleigh Scattering // Applied Optics. – 1973. – Vol. 12, No. 2. – P. 314–329.
16. Fischer J., Grassl H. Radiative transfer in an atmosphere-ocean system: an azimuthally dependent matrix-operator approach // Applied Optics. – 1984. – Vol. 23, No. 7. – P. 1032–1039.
17. Budak V.P., Efremenko D.S., Shagalov O.V. Efficiency of algorithm for solution of vector radiative transfer equation in turbid medium slab // Journal of Physics: Conference Series. – 2012. – Vol. 369. – P. 1–10.
18. Natraj V., Spurr R.J.D. A fast linearized pseudo-spherical two orders of scattering model to account for polarization in vertically inhomogeneous scattering-absorbing media // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2007. – Vol. 107, No. 2. – P. 263–293.
19. Lenoble J., Herman M., Deuzé J.L. et al. A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2007. – Vol. 107, no. 3. – Pp. 479–507.
20. Waterman P.C. Matrix-exponential description of radiative transfer // J. Opt. Soc. Am. – 1981. – Vol. 71, No. 4. – P. 410–422.
21. Nakajima T., Tanaka M. Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere // Journal of Quantitative Spectroscopy and Radiative Transfer. – 1986. – Vol. 35, No. 1. – P. 13–21.
22. Budak V.P., Klyuykov D.A., Korkin S.V. Convergence acceleration of radiative transfer equation solution at strongly anisotropic scattering / Light Scattering Reviews 5. – Berlin, Heidelberg: Springer, 2010. – P. 147–203.
23. Efremenko D., Doicu A., Loyola D., Trautmann T. Acceleration techniques for the discrete ordinate method // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2013. – Vol. 114. – P. 73–81.
24. Shi Y.-N., Zhang F., Chan K.L. et al. Multi-layer solar radiative transfer considering the vertical variation of inherent microphysical properties of clouds // Optics Express. – 2019. – Vol. 27, No. 20. – P. A1569.
25. Spurr R., Natraj V. A linearized two-stream radiative transfer code for fast approximation of multiple-scatter fields // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2011. – Vol. 112, No. 16. – P. 2630–2637.
26. van Oss R.F., Spurr R.J.D. Fast and accurate 4 and 6 stream linearized discrete ordinate radiative transfer models for ozone profile retrieval // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2002. – Vol. 75, No. 2. – P. 177–220.
27. Di Girolamo L. Reciprocity principle applicable to reflected radiance measurements and the searchlight problem // Applied Optics. – 1999. – Vol. 38, No. 15. – P. 3196–3198.
28. Bodhaine B.A., Wood N.B., Dutton E.G., Slusser J.R. On Rayleigh optical depth calculations // Journal of Atmospheric and Oceanic Technology. – 1999. – Vol. 16, No. 11. – P. 1854–1861.
29. Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. – Weinheim: Wiley-VCH, 1998. – 530 p.
30. Deirmendjian D. Electromagnetic Scattering on Spherical Polydispersions. – N.Y.: American Elsevier Publishing Company Inc., 1969. – 318 p.
31. Marquardt D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters // Journal of the Society for Industrial and Applied Mathematics. – 1963. – Vol. 11, No. 2. – P. 431–441.
32. Loyola R D.G., Pedergnana M., Gimeno García S. Smart sampling and incremental function learning for very large high dimensional data // Neural Networks. – 2016. – Vol. 78. – P. 75–87.
33. Halton J.H. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals // Numerische Mathematik. – 1960. – Vol. 2, No. 1. – P. 84–90.
34. Wang X., Hickernell F.J. Randomized Halton sequences // Mathematical and Computer Modelling. – 2000. – Vol. 32, No. 7–8. – P. 887–899.
35. Xu J., Schussler O., Loyola D.G. et al. A Novel Ozone Profile Shape Retrieval Using Full-Physics Inverse Learning Machine (FPILM) // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. – 2017. – Vol. 10, No. 12. – P. 5442–5457.
36. Amdahl G.M. Validity of the single processor approach to achieving large scale computing capabilities / Proceedings of the April 18–20, 1967, spring joint computer conference on – AFIPS ‘67 (Spring). – ACM Press, 1967. – P. 483–485.
37. Stamnes K., Tsay S.C., Wiscombe W., Jayaweera K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media // Appl Opt. – 1988. – Vol. 12. – P. 2502–2509.
38. Spurr R.J.D. LIDORT and VLIDORT. Linearized pseudo-spherical scalar and vector discrete ordinate radiative transfer models for use in remote sensing retrieval problems / Light scattering reviews 3: Light Scattering and Reflection (ed. by A.A. Kokhanovsky). – Heidelberg: Springer, 2008. – P. 229–275.
39. Budak V.P., Kaloshin G.A., Shagalov O.V., Zheltov V.S. Numerical modeling of the radiative transfer in a turbid medium using the synthetic iteration // Opt. Express. – 2015. – Vol. 23, No. 15. – P. A829–A840.
Ключевые слова
Выберите вариант доступа к этой статье

Купить

Рекомендуемые статьи
https://ucardioj.com.ua/classes/https://ois.unsa.ba/wild-bandito/https://journals.qmu.ac.uk/controllers/https://journals.qmu.ac.uk/classes/https://ucardioj.com.ua/slot-depo-10k/https://journals.qmu.ac.uk/sv388/https://journals.qmu.ac.uk/api/depo-10k/https://ois.unsa.ba/slot-deposit-pulsa/http://103.165.243.97/doc/git/https://www.chiesadellarte.org/https://www.rollingcarbon.org/https://www.savebugomaforest.org/https://www.sigmaslot-profil.com/https://www.doxycycline365.com/https://thailottonew.site/https://hipnose.in/https://tennishope.orghttps://serenityprime.net/https://revista.farol.edu.br/uploads/pt2/https://civitic.indoamerica.edu.ec/wp-includes/pasarantogel2/https://journals.uol.edu.pk/classes/pasarantogel2/http://snabm.unim.ac.id/api/http://snabm.unim.ac.id/classes/slot-luar-negeri/http://103.165.243.97/doc/unsign/akun-pro-platinum/http://103.165.243.97/doc/word/mposlot/https://352spb.edusite.ru/slot-depo-10k/https://bundamediagrup.co.id/depo10k/https://loa.tsipil-uii.ac.id/sg-gacor/http://snabm.unim.ac.id/depo-10k/http://snabm.unim.ac.id/lib/slot-maxwin/http://103.165.243.97/doc/luar-negeri/http://103.165.243.97/doc/sign/slot-thailand/http://103.165.243.97/doc/before_tte/zeus-slot/https://appv2.tanahlautkab.go.id/doc/mpo/https://www.chuka.ac.ke/gates-of-olympus-1000/https://appv2.tanahlautkab.go.id/doc/unsign/http://103.165.243.97/doc/kamboja/http://mysimpeg.gowakab.go.id/mysimpeg/bangkomplit/http://mysimpeg.gowakab.go.id/toto/http://mysimpeg.gowakab.go.id/mysimpeg/maxwin/https://jurnal.jsa.ikippgriptk.ac.id/public/luar/https://www.unjc.cu/sweet-bonanza/http://103.165.243.97/doc/dana/https://fk.ulm.ac.id/wp-content/uploads/https://fk.ulm.ac.id/wp-content/fonts/https://ppid.cimahikota.go.id/infomugi/slot-luar-negeri/http://103.165.243.97/doc/cth/https://ppid.cimahikota.go.id/assets/maxwin-slot/https://ijatr.polban.ac.id/docs/https://loa.tsipil-uii.ac.id/data/thailand/https://loa.tsipil-uii.ac.id/scatter-hitam/https://ijatr.polban.ac.id/toto/https://ppid.cimahikota.go.id/infomugi/https://ppid.cimahikota.go.id/image/slot-gacor-hari-ini/https://mpp.bandung.go.id/mpo/https://mpp.bandung.go.id/assets/css/https://mpp.bandung.go.id/display/nexus/https://simba.cilacapkab.go.id/simba_project/maxwin-slot/https://simba.cilacapkab.go.id/simba_project/sbobet88/https://simba.cilacapkab.go.id/idnslot/https://mpp.bandung.go.id/surat/idnslot/https://fk.ulm.ac.id/wp-content/thailand/https://rdsp.msp.gob.do/api/thailand/https://perijinan.blitarkota.go.id/assets/jp-gacor/https://revista.forumseguranca.org.br/https://perijinan.blitarkota.go.id/data/situs-toto/https://perijinan.blitarkota.go.id/assets2/https://mpp.bandung.go.id/attachments/https://mpp.bandung.go.id/images/https://mpp.bandung.go.id/assets/thailand/https://perijinan.blitarkota.go.id/data/toto-slot/https://simba.cilacapkab.go.id/db/toto-slot/https://simba.cilacapkab.go.id/vendor/https://perijinan.blitarkota.go.id/data/depo-10k/https://mpp.bandung.go.id/git/demo/https://mpp.bandung.go.id/api/jp-gacor/https://simba.cilacapkab.go.id/assets/depo-10k/https://simba.cilacapkab.go.id/api/demo/https://simba.cilacapkab.go.id/api/https://sim.stidar.ac.id/img/https://sim.stidar.ac.id/sweet-bonanza/https://sim.stidar.ac.id/slot-anti-rungkad/https://kuesioner.instidla.ac.id/akun-pro-platinum/https://lpm.instidla.ac.id/lucky-neko/https://ijabr.polban.ac.id/mpo/https://ijabr.polban.ac.id/idn/https://kuesioner.instidla.ac.id/wild-bandito/http://kwitansi.instidla.ac.id/demo-lucky-neko/https://perdami.or.id/wp-includes/zeus-slot/http://kwitansi.instidla.ac.id/slot-garansi-kekalahan/https://bundamediagrup.co.id/wp-includes/idn/http://103.165.243.97/doc/maxwin-slot/http://103.165.243.97/doc/sv388/https://bundamediagrup.co.id/akun/demo/https://bundamediagrup.co.id/wp-content/akun-pro-kamboja/https://ijabr.polban.ac.id/api/https://ijabr.polban.ac.id/-/pulsa/https://sipirus.sukabumikab.go.id/storage/uploads/jp-thailand/https://sipirus.sukabumikab.go.id/storage/uploads/-/sthai/https://sipirus.sukabumikab.go.id/storage/uploads/-/stoto/https://sipirus.sukabumikab.go.id/storage/uploads/server-kamboja/https://alwasilahlilhasanah.ac.id/starlight-princess-1000/https://www.remap.ugto.mx/pages/slot-luar-negeri-winrate-tertinggi/https://waper.serdangbedagaikab.go.id/public/images/qrcode/slot-dana/https://waper.serdangbedagaikab.go.id/public/images/qrcode/slot-deposit-pulsa/https://waper.serdangbedagaikab.go.id/storage/framework/http://103.165.243.97/doc/thailand/https://appv2.tanahlautkab.go.id/easy-win/https://kuesioner.instidla.ac.id/asset/http://kwitansi.instidla.ac.id/database/http://lms.instidla.ac.id/backup/https://lpm.instidla.ac.id/wp-includes/block-patterns/http://mutu.instidla.ac.id/app/https://sipirus.sukabumikab.go.id/storage/uploads/kantah/https://sipirus.sukabumikab.go.id/storage/uploads/slot-depo-10k/https://ijabr.polban.ac.id/classes/slot-gacor-gampang-menang/https://ijabr.polban.ac.id/registry/https://ijabr.polban.ac.id/locale/https://lpm.instidla.ac.id/wp-content/uploads/https://bakesbangpol.katingankab.go.id/uploads/pulsahttps://sipirus.sukabumikab.go.id/storage/uploads/pembahas/