Content

Light & Engineering 32 (6) 2024
Volume 32Date of publication 12/12/2024
Pages 55–59
Abstract:
We considered the experiments, in which longitudinal electromagnetic oscillations are excited by electron (Reflected Electron Energy Loss Spectrometry or REELS) and X-ray (X-ray Photo Electron Spectroscopy or XPS) scanning of solids. Peaks in the spectra of electron energy losses associated with the excitation of plasma oscillations of free (valence) electrons of a solid body were found. We considered (e, 2e) the experimental analysis of secondary electron energy spectra showing peaks corresponding to the energy of plasma oscillations (Langmuir waves). We also studied the electron bombardment-induced photon emission experiments in the energy range coinciding with the energy of plasmon excitations; we observed the energy of plasmon excitations. We noted that the introduction of the “plasmon vacuum” concept provided a consistent quantum-mechanical definition of plasmon relaxation by the emission of longitudinal photons. We identified the wavelength range in which the most intense emission of longitudinal quanta is observed.
References:
1. Afanas’ev, V.P., Gryazev, A.S., Efremenko, D.S., Kaplya, P.S. Differential inverse inelastic mean free path and differential surface excitation probability retrieval from electron energy loss spectra // Vacuum, 2017, Vol. 136, pp. 146–155. Doi: 10.1016/j.vacuum. 2016.10.021. 2. Ridzel, O.Y., Kalbe, H., Astaˇsauskas, V., Kuksa, P., Bellissimo, A., Werner, W.S.M. Optical constants of organic insulators in the UV range extracted from reflection electron energy loss spectra // Surf. Interface Anal. 2022, Vol. 54, # 5, pp. 487–500. Doi: 10.1002/sia.7055. 3. Werner, W.S.M., Glantschnig, K., Ambrosch-Draxl, C. Optical constants and inelastic electron-scattering data for 17 elemental metals // J. Phys. Chem. Ref. Data, 2009, Vol. 38, pp. 1013–1092. Doi: 10.1063/1.3243762. 4. Werner, W.S.M., Salvat-Pujol, F., Bellissimo, A., Khalid, R., Smekal, W., Novak, M., Ruocco, A., Stefani, G. Secondary-electron emission induced by in vacuo surface excitations near a polycrystalline Al surface // Phys. Rev. B. 2013, Vol. 88, p. 201407. Doi:10.1103/physrevb.88.201407. 5. Bellissimo, A., Pierantozzi, G.M., Ruocco, A., Stefani, G., Ridzel, O. Yu., Astašauskas, V., Taborelli, M., Werner, W.S.M. Secondary electron generation mechanisms in carbon allotropes at low impact electron energies // J. Electron Spectrosc. Relat. Phenom. 2019, Vol. 241, p. 146883. Doi: 10.1016/j.elspec.2019.07.004. 6. Werner, W.S.M., Simperl, F., Blödorn, F., Brunner, J., Kero, J., Bellissimo, A., Ridzel, O. Energy Dissipation of Fast Electrons in Polymethylmethacrylate: Toward a Universal Curve for Electron-Beam Attenuation in Solids between ∼0 eV and Relativistic Energies // Phys. Rev. Lett. 2024, Vol. 132, p. 186203. Doi:10.1103/PhysRevLett.132.186203. 7. Balykin, V.I. Plasmon nanolaser: current state and prospects [Plazmonnyi nanolazer: sovremennoe sostoyanie i perspektivy] // Advances in Physical Sciences (УФН), 2018, Vol. 188, # 9, pp. 935–963. 8. Ritchie, R.H. Plasma Losses by Fast Electrons in Thin Films // Phys. Rev. 1957, Vol. 106, pp. 874. Doi:10.1103/PhysRev.106.874. 9. Veklenko, B.A., Afanas’ev, V.P., Lubenchenko, A.V. Scattering of electrons by vacuum fluctuations of plasma waves // JETP, 2014, Vol. 118, # 4, pp. 521–533. 10. Budak, V.P., Veklenko, B.A. Boson peak, flickering noise, backscattering processes and radiative transfer in random media // Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, Vol. 112, pp. 864–875. Doi:10.1016/j.jqsrt.2010.10.007. 11. Liperovsky, V.A., Tsitovich, V.N. On the decay of longitudinal Langmuir plasma oscillations into ion-sound [O raspade prodol’nykh lengmyurovskikh kolebanii plazmy na ionno-zvukovye] // Journal of Applied Mechanics and Technical Physics (ПМТФ),1965, # 5, pp. 15–22. 12. Kosobukin, V.A. Two-dimensional Coulomb plasmon-excitons: relaxation of excitations [Dvumernye kulonovskie plazmon-eksitony: relaksatsiya vozbuzhdenii] // Physics of the Solid State, 2021, Vol. 63, # 8, pp. 1157–1165. 13. Wu, X., Liu, B., Frauenheim, T., Tretiak, S., Yam, C., Zhang, Y. Investigation of plasmon relaxation mechanisms using nonadiabatic molecular dynamics // J. Chem. Phys., 2022, Vol. 157, p. 214201. Doi:10.1063/5.0127435. 14. Mustafaev, A.S. Dynamics of electron beams in plasma [Dinamika elektronnykh puchkov v plazme] // Journal of Technical Physics, 2001, Vol. 71, # 4 pp. 111–121. 15. Bobylev, Y.V., Kuzelev, M.V. Nonlinear relativistic quantum theory of cherenkov emission of longitudinal langmuir waves in a plasma // Plasma Physics Reports, 2011, Vol. 37, # 10, pp. 890–895. 16. Klyap, M.P., Kritsky, V.A., Kulyupin, Yu.A., Kucherenko, Yu.N., Pilipchak, K.N., Pop, S.S. Electron-photon emission of copper [Pop S.S. Elektron-fotonnaya emissiya medi] // Journal of Experimental and Theoretical Physics (ЖЭТФ), 1984, Vol. 86, pp. 1117–1123. 17. Kritsky, V.A., Pop, S.S., Drobnich, V.G. Optical emission spectra of gold and silver polycrystal surfaces bombarded by slow electrons [Spektry opticheskogo izlucheniya poverkhnostei polikristallov zolota i serebra, bombardiruemykh medlennymi elektronami] // Izv. AN SSSR, Ser. fiz. 1976, Vol. 40, # 12, pp. 2600–2603. 18. Pop, S.S., Kritsky, V.A., Zapesochny, I.P. Detection of surface and bulk plasmons in electron-photon emission of silver surface [Obnaruzhenie poverkhnostnykh i ob”emnykh plazmonov pri elektron-fotonnoi emissii poverkhnosti serebra] // JETP Letters, 1979, Vol. 5, # 23, pp. 1452–1455. 19. Kritsky, V.A., Klyap, M.P., Ovchinnikov, V.L. Polarization of optical radiation of the surface of a silver polycrystal under bombardment with low-energy electrons [Polyarizatsiya opticheskogo izlucheniya poverkhnosti polikristalla serebra pri bombardirovke elektronami maloi energii] JETP Letters, 1981, Vol. 7, pp. 290–294. 20. Went, M.R., Vos, M., Werner, W.S.M. Extracting the Ag surface and volume loss functions from reflection electron energy loss spectra // Surf. Sci., 2008, Vol. 602, pp. 2069–2077. Doi: 10.1016/j.susc.2008.04.011. 21. Werner, W.S.M. Dielectric function of Cu, Ag, and Au obtained from reflection electron energy loss spectra, optical measurements, and density functional theory // Appl. Phys. Lett., 2006, Vol. 89, p. 213106. Doi:10.1063/1.2397026. 22. Bergman, D.J., Stockman, M.I. Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems // Phys. Rev. Lett., 2003, Vol. 90, p. 027402. Doi: 10.1103/PhysRevLett.90.027402.
Keywords
- longitudinal plasmons
- energy spectra
- secondary electrons
- electron bombardment-induced photon emission
- plasmon vacuum
- longitudinal photons
Recommended articles
Application Of The Photometric Theory Of The Radiance Field In The Problems Of Electron Scattering. L&E 27 (2) 2019