Content
Abstract:
A physical-mathematical model of dependence of internal quantum efficiency on current for LED structures with quantum wells has been developed. The volt-ampere characteristic is modelled with the involvement of Shockley, Noyce, Sah recombination theory, supplemented by the quantum wells distribution function. In order to obtain dependence of internal quantum efficiency of LEDs on current, model of rate of ABC recombination in quantum wells is used. The developed model was tested with variations of quantum wells parameters and external impact conditions.
References:
1. Nakamura, S., Iwasa, M.S. Method of manufacturing p-type compound semiconductors // Patent N5306662. Apr.1994. Japan. 2. Amano, H., Akasaki, I. et.al. Method for producing a luminous element of III-group nitride. Patent #5496766. Mar. 1996. Japan. 3. Mamakin, S.S., Yunovich, A.E., Vattana, A.B., Manyakhin, F.I. Electric Properties and Fluorescence Spectra of LED’s Based on InGaN/GaN Heterojunctions with Modulated and Doped Quantum Wells [Elektricheskiye svoystva i spektry luminestsentsii svetodiodov na osnove geteroperekhodov InGaN/GaN s modulirovanno-legirovannymi kvantovymi yamami] // FTP, 2003, Vol. 37, # 9, pp. 1131–1137. 4. Voytsekhovsky, A.V., Nesmelov, S.N., Kulchitsky, N.A., Melnikov, A.A. The Influence of Dislocations on Internal Quantum Efficiency of Light-Emitting Structures Based on InGaN/GaN Quantum Wells [Vliyaniye dislokatsiy na vnutrennyuyu kvantovuyu effektivnost svetoizluchayushchikh struktur na osnove kvantovykh yam In-GaN/GaN] // Nano i mikrosistemnaya tekhnika, 2011, Vol. 8I, pp. 27–35. 5. Shim, J.-I., Shin, D.-S. Measuring the internal quantum efficiency of light-emitting diodes towards accurate reliable room-temperature characterization // Nanophotonics, 2018, September, pp. 1–15. 6. Zang, M., Bhattacharya, P., Singh, J., Hinckley, J. Direct measurement of auger recombination in In0.1Ga0.9N/ GaN quantum well and its impact on the efficiency in In0.1Ga0.9N/GaN multiply uantum well light emitting diodes // Appl. Phys. Letter, 2009, Vol. 95, # 20, pp. 1108. 7. Dai, Q., Shan, Q., Wang, J., Chhajed, S., Cho, J.M., Shubert, E.F., Crawford, M.H., Koleske, D. D., Kim, M.-H., Park, Y. Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes // Appl. Phys. Letter, 2010, Vol. 97, # 13, pp. 3507. 8. David, A., Grundmann, M.J. Droop in InGaN lightemitting diodes: A differential carrier lifetime analysis // Appl. Phys. Letter, 2010, Vol. 96, # 10, pp. 3504. 9. David, A., Hurni, C.A., Young, N.G., Craven, M.D. Electrical properties of III-nitride LEDs recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling // Appl. Phys. Letter, 2016, Vol. 109, # 8, pp. 3501. 10. Hopkins, M.A., Allsopp, D.W.E., Kappers, M.J., Oliver, R.A., Humpreys, C.J. The ABC model of recombination reinterpreted: Impact on understanding carrier transport and efficiency droop in InGaN/GaN light emitting diodes // J. Appl. Phys. 2017, Vol. 122, # 23, pp. 4505. 11. Bochkaryova, N.I., Rebane, Yu.T. Shreter, Yu.G. Growth of Shockley-Reed-Hall Recombination Rate in InGaN/GaN Quantum Wells as the Major Mechanism of Loss of LED Efficiency at High Injection Levels [Rost skorosti rekombinatsii Shokli-Rida-Holla v kvantovykh yamakh InGaN/GaN kak osnovnoy mekhanizm padeniya effektivnosti svetodiodov pri vysokikh urovnyakh inzhektsii] // FTP, 2015, Vol. 49, # 12, pp. 1714–1719. 12. Prudaev, I.A., Skakunov, M.S., Lelekov, M.A., Ryaboshtan, Yu.L., Gorlachuk, P.V., Marmalyuk, A.A. Recombinant Currents in LEDs Based on Multiple Quantum Wells (AlxGa1-x)0.5In0.5P/(AlyGa1-y)0.5In0.5P [Rekombinatsyonnyye toki v svetodiodakh na osnove mnozhestvennykh kvantovykh yam (AlxGa1-x)0.5In0.5P/(AlyGa1-y)0.5In0.5P] // Izvestiya vuzov. Fizika, 2013, Vol. 56, # 8, pp. 44–47. 13. Sah C.T., Noyce R.N., Shockley W. Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics // Proc. IRE, 1957, Vol. 45, pp. 1228–1243. 14. Choo, S.C. Carrier generation-recombination in the space-charge region of an assymmetrical p-n junction // Solid State Electronics,1968, Vol. 11, pp. 1069–1077. 15. Fedor I. Manyakhin, Arthur B. Vattana, and Lyudmila O. Mokretsova Application of the Sah-Noyce-Shockley Recombination Mechanism to the Model of the Voltage-Current Relationship of LED Structures with Quantum Wells// Light & Engineering Journal, 2020, Vol. 28, #5, pp. 31–38. 16. Goryunov, N.N., Manyakhin, F.I., Klebanov, M.P., Lukashev, N.V. Impulse Three-Frequency Method of Measurement of Charged Centre Parameters in the Space Charge Region of Semiconductor Structures [Impulsnyy tryokhchastotnyy metod izmereniya parametrov zaryazhennykh tsentrov v oblasti prostranstvennogo zaryada poluprovodnikovykh struktur] // Pribory i sistemy upravleniya, 1999, Vol. 10, pp. 46–49. 17. Shockley, W. The Theory of p – n Junctions in Semiconductors and p-n Junction Transistors // Bell Syst. Tec. J. 1949, Vol. 28, pp. 435–489. 18. Abdullaev, Zh.S., Gusev, M. Yu., Zyuganov, A.N., Torchinskaya, T.V. Parameters of Deep Centres in AlGaAs LEDs Evaluated by Capacity and Injection Spectroscopy Methods [Parametry glubokikh tsentrov v svetodiodakh AlGaAs otsenyonnyye metodami emkostnoy i inzhektsionnoy spektroskopii] // Ukr. Phys. Journal. 1989, Vol. 34, # 8, pp. 1220–1224. 19. Voytsekhovky, A.V., Gorn, D.I. Recombination Mechanisms in InGaN/GaN Structures with Quantum Wells at High Levels of Excitation [Mekhanizmy rekombinatsii v strukturakh InGaN/GaN s kvantovymi yamami pri vysokikh urovnyakh vozbuzhdeniya] // Izvestiya vuzov.Fizika, 2015, Vol. 58, # 8/2, pp. 171–173. 20. NSM Archive. Physical Properties of Semiconductors. URL: http://www.ioffe.rssi.ru/SVA/NSM/Semicond/(reference date: 28.02.2020). 21. Ladygin, E.A. The Effect of Ionising Radiation on Electronic Equipment [Deystviye pronikayushchey radiatsii na izdeliya elektronnoy tekhniki]. Moscow: Sovetskoye radio, 1980, 224 p.
Keywords
- LED structures with quantum wells
- internal quantum efficiency
- Shockley
- Noyce
- Sah recombination model
- ABC recombination model
Recommended articles
Application Of The Sah-noyce-shockley Recombination Mechanism To The Model Of The Voltagecurrent Relationship Of Led Structures With Quantum Wells Light & Engineering Vol. 28, No. 5
The Regularity of the Decrease in the Quantum Yield of Quantum-Wells LEDs at the Long-Term Current Flow from the ABC Model Position L&E, Vol. 29, No. 5 (2), 2021
The Interrelation between Temperature and Power Supply Modes of Low Power High Efficiency Light Emitting Diodes L&E, Vol.31, No.3, 2023