Number of images - 10
Tables and charts - 1
Magnetic Field Implementing into the Electroluminescence of OLED Devices  Doped with CoFe2O4 Nanoparticles L&E 28 (2) 2020

Light & Engineering 28 (2)

Volume 28
Date of publication 04/13/2020
Pages 95–105

Purchase PDF - $6

Magnetic Field Implementing into the Electroluminescence of OLED Devices Doped with CoFe2O4 Nanoparticles L&E 28 (2) 2020
Articles authors:
Selin Piravadili Mucur, Betül Canimkurbey, Ayse Demir Korkmaz

Selin Piravadili Mucur after completing her primary and secondary education in Bandırma completed her graduate and Master of Science education at Hacettepe University in Physics Engineering Department in period 2000–2007. In 2011, she began experimental studies as a student in the Photonics, Electronics and Sensors Laboratory TÜBİTAK UME and started her Ph.D. program in the Institute of Engineering and Science, Physics Department at Gebze Technichal University and finished it in  2015. Her Ph.D. subject was “Effect of Metal and Semiconductor Nanoparticles on the Performance of Organic Lıght Emitting Diodes Based on Conjugated Polymers”. Since 2013, she has been working as a researcher in the Photonics Technologies Group at Marmara Research Centre, TUBITAK. Her scientific field interests are optoelectronic devices, organic field effect transistors, thin films, organic light emitting devices, and organic photovoltaic devices

Betül Canimkurbey has graduated from Gebze Technical University with Ph.D. degree in 2017. At present, she is an Assistant Professor and the Assistant Director of the central research laboratory at Amasya University. Her scientific field interests are:  optoelectronic devices, organic field effect transistors, thin films, organic light  emitting devices, and organic photovoltaic devices

Ayse Demir Korkmaz received her Ph.D. degree in chemistry from Fatih University in Istanbul, Turkey in 2015. She has been working as a research assistant in Istanbul Medeniyet University since 2012 where she conducts research activities in the areas of magnetic nanoparticles, inorganic nanomaterials, and their biomedical applications

Cobalt ferrite magnetic nanoparticles (CoFe2O4 MNPs) were successfully prepared by citric acid-assisted sol-gel auto combustion method and used in emissive layer of organic light emitting diode (OLED). Dimensional, structural and magnetic properties of CoFe2O4 nanoparticles (NPs) were recearched and compared by using X-ray diffraction  (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). CoFe2O4 MNPs were utilized at various concentrations (0.5 wt%, 1.0 wt% and 2.0 wt%) in the emissive layer of the OLEDs. The luminance, current efficiency and the electroluminescence characteristics of the devices with and without CoFe2O4 MNPs were investigated. An external magnetic field, Bext, has also been applied to the OLEDs doped with MNPs while under operation. Effects of MNPs on OLED  characteristics under Bext were studied thoroughly. In the tailored device architecture, poly (3,4-ethylenedioxythiophene): poly polystyrene sulphonate (PEDOT: PSS) and poly(2-methoxy-5-(2-ethylhexyloxy))-1,4-phenylene vinylene (MEH-PPV) were used as a hole transport layer (HTL) and an emissive layer respectively with ITO/PEDOT: PSS/ MEH-PPV: CoFe2O4/Ca/Al device architecture. The obtained results of the fabricated OLEDs were enhanced in the presence of CoFe2O4 NPs under Bext due to providing density of states in the polymer matrices. The turn-on voltage was diminished slightly in the device doped with 0.5 % wt MNP compared to the devices with other concentrations of MNPs.
1. A. Köhler, J.S. Wilson, R.H. Friend, Fluorescence and phosphorescence in organic materials// Advanced Engineering Materials, 2002, Vol. 4, #7, 453p.
2. B.W. D’Andrade, S.R. Forrest, White organic light emitting devices for solid state lighting// Advanced Materials, 2004, Vol. 16, #18, pp. 1585–1595.
3. J. Feng, T. Okamoto, R. Naraoka, S. Kawata, Enhancement of surface plasmon-mediated radiative energy transfer through a corrugated metal cathode in organic light-emitting devices// Applied Physics Letters, 2008, Vol. 93, #5, 051106.
4. T. Ahn, H. Lee, S.-H. Han, Effect of annealing of  polythiophene derivative for polymer light-emitting diodes// Applied physics letters, Vol. 80, #3, pp. 392–394.
5. A. Misra, P. Kumar, M. Kamalasanan, S. Chandra, White organic LEDs and their recent advancements// Semiconductor science and Technology, 2006, Vol 21, #7, R35.
6. S.-M. Seo, J.H. Kim, J.-Y. Park, H.H. Lee, Coordination-complex polymer as an organic conductor for organic light-emitting diodes// Applied Physics Letters, Vol. 87, #18,183503.
7. S.Y. Kim, J.M. Baik, H.K. Yu, K.Y. Kim, Y.-H. Tak, J.-L. Lee, Rhodium-oxide-coated indium tin oxide for enhancement of hole injection in organic light emitting diodes// Applied Physics Letters, 2005, Vol. 87, #7, 072105.
8. J.-H. Li, J. Huang, Y. Yang, Improved hole-injection contact for top-emitting polymeric diodes// Applied physics letters,2007, Vol. 90, #17, 173505.
9. M. Suzuki, S. Tokito, F. Sato, T. Igarashi, K. Kondo, T. Koyama, T. Yamaguchi, Highly efficient polymer  light-emitting devices using ambipolar phosphorescent polymers// Applied Physics Letters, 2005, Vol. 86, #10, 103507.
10. M. Baldo, D. O’brien, M. Thompson, S. Forrest, Excitonic singlet-triplet ratio in a semiconducting organic thin film// 1999, Physical Review B, Vol. 60,  #20, 14422.
11. B. Hu, Y. Wu, Z. Zhang, S. Dai, J. Shen, Effects  of ferromagnetic nanowires on singlet and triplet exciton fractions in fluorescent and phosphorescent organic  semiconductors// Applied physics letters, Vol. 88, #2, 022114.
12. P.P. Ruden, D.L. Smith, Theory of spin injection into conjugated organic semiconductors// Journal of applied physics, 2004, Vol. 95, #9, pp. 4898–4904.
13. P. Blom, M. De Jong, S. Breedijk, Temperature dependent electron-hole recombination in polymer lightemitting diodes// Applied Physics Letters,1997, Vol. 71, #7, pp. 930–932.
14. Z. Xu, Y. Wu, B. Hu, I.N. Ivanov, D.B. Geohegan, Carbon nanotube effects on electroluminescence  and photovoltaic response in conjugated polymers// Applied Physics Letters, 2005, Vol. 87, #26, 263118.
15. Y. Cao, I.D. Parker, G. Yu, C. Zhang, A.J. Heeger, Improved quantum efficiency for electroluminescence  in semiconducting polymers// Nature,1999, Vol. 397, #6718, pp. 414–417.
16. P.K. Ho, J.-S. Kim, J.H. Burroughes, H. Becker, S.F. Li, T.M. Brown, F. Cacialli, R.H. Friend, Molecularscale interface engineering for polymer light-emitting diodes// Nature, 2000, Vol. 404, #6777, pp. 481–484.
17. M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. Vardeny, Formation cross-sections of singlet and triplet excitons in π-conjugated polymers// Nature, 2001, Vol. 409, #6819, pp. 494–497.
18. J. Wilson, A. Dhoot, A. Seeley, M. Khan, A. Köhler, R. Friend, Spin-dependent exciton formation in π-conjugated compounds// Nature, 2001, Vol. 413,  #6858, pp. 828–831.
19. Z. Shuai, D. Beljonne, R. Silbey, J.-L. Brédas, Singlet and triplet exciton formation rates in conjugated polymer light-emitting diodes// Physical review letters, 2000, Vol. 84, #1, 131.
20. M.N. Kobrak, E.R. Bittner, Quantum molecular dynamics study of polaron recombination in conjugated polymers// Physical Review B, 2000, Vol. 62, #17, 11473.
21. T.-M. Hong, Meng H.-F. Spin-dependent recombination and electroluminescence quantum yield in conjugated polymers// Physical Review B, 2001, Vol. 63, #7, 075206.
22. V. Cleave, G. Yahioglu, P.L. Barny, R.H. Friend, Tessler N. Harvesting singlet and triplet energy in polymer LEDs// Advanced Materials, 1999, Vol. 11, #4, pp. 285–288.
23. C.-J. Sun, Y. Wu, Z. Xu, B. Hu, J. Bai, J.-P. Wang, Shen J. Enhancement of quantum efficiency of  organic light emitting devices by doping magnetic nanoparticles// Applied physics letters, 2007, Vol. 90, #23, 232110.
24. E.L. Frankevich, Balabanov E.L. New effect of  increasing the photoconductivity of organic semiconductors in a weak magnetic field// ZhETF Pisma Redaktsiiu,  1965, Vol. 1, #6, pp. 33–37.
25. E. Frankevich, The nature of a new effect of a  change in the photoconductivity of organic semiconductors in a magnetic field, Soviet Physics JETP// 1966,  Vol. 23, #5, pp. 1226–1234.
26. E.L. Frankevich, E.L. Balabanov, Changes in photoconductivity of an anthracene single crystal in amagnetic field// Solid State Physics, 1966, Vol. 8, #3,  pp. 855–889.
27. E. Frankevich, E.L. Balabanov, G.V. Vselyubskaya, Investigation of change in photoconductivity of organic semiconductors in a magnetic field//Solid State  Physics, 1966, Vol. 8, pp. 1970–1973.
28. J. Kalinowski, J. Szmytkowski, Stampor W. Magnetic hyperfine modulation of charge photogeneration  in solid films of Alq 3// Chemical physics letters, 2003,  Vol. 378, #3, pp. 380–387.
29. J. Kalinowski, M. Cocchi, D. Virgili, P. Di Marco, Fattori V. Magnetic field effects on emission and current in Alq 3-based electroluminescent diodes// Chemical  Physics Letters, 2003, Vol. 380, #5, pp. 710–715.
30. A.H. Davis, Bussmann K. Large magnetic field effects in organic light emitting diodes based  on tris (8-hydroxyquinoline aluminum)(Alq 3)/N, N′Di (naphthalen-1-yl)-N, N′ diphenyl-benzidine (NPB)  bilayers// Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2004, Vol. 22, #4, pp. 1885–1891.
31. T. Francis, Ö. Mermer, G. Veeraraghavan, Wohlgenannt M. Large magnetoresistance at room temperature in semiconducting polymer sandwich devices// New Journal of Physics, 2004, Vol. 6, #1, 185.
32. Ö. Mermer, G. Veeraraghavan, T. Francis, Y. Sheng, D. Nguyen, M. Wohlgenannt, A. Köhler, M.K. Al-Suti, Khan M., Large magnetoresistance in nonmagnetic π-conjugated semiconductor thin film devices// Physical Review B, 2005, Vol. 72, #20, 205202.
33. V. Prigodin, J. Bergeson, D. Lincoln, Epstein A. Anomalous room temperature magnetoresistance in organic semiconductors// Synthetic Metals,2006, Vol. 156, #9, pp. 757–761.
34. P. Desai, P. Shakya, T. Kreouzis, W. Gillin, N. Morley, Gibbs M. Magnetoresistance and efficiency  measurements of Al q 3-based OLEDs// Physical Review  B, Vol. 75, #9, 094423.
35. P. Bobbert, T. Nguyen, F. Van Oost, V.B. Koopmans, Wohlgenannt M. Bipolaron mechanism for organic magnetoresistance// Physical Review Letters, 2007, Vol. 99, #21-216801.
36. H. Kavas, A. Baykal, A. Demir, M.S. Toprak, Aktaş B. ZnxCu (1– x) Fe2O4 Nanoferrites by Sol–Gel Auto Combustion Route: Cation Distribution and Microwave Absorption Properties// Journal of Inorganic and Organometallic Polymers and Materials, 2014, Vol. 24, #6, pp. 963–970.
37. Pielaszek R. Analytical expression for diffraction  line profile for polydispersive powders, Applied Crystallography// Proceedings of the XIX Conference, World Scientific, Singapore, 2004, pp. 43–50.
38. T. Wejrzanowski, R. Pielaszek, A. Opalińska,  H. Matysiak, W. Łojkowski, Kurzydłowski K. Quantitative methods for nanopowders characterization// Applied Surface Science, 2006, Vol. 253, #1, pp. 204–208.
39. K. Venkatesan, D.R. Babu, M.P.K. Bai, R. Supriya, R. Vidya, S. Madeswaran, P. Anandan, M. Arivanandhan, Hayakawa Y. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications// International journal of nanomedicine, 2015, Vol. 10, Suppl 1, 189.
40. S. Asiri, S. Güner, A. Demir, A. Yildiz, A. Manikandan, Baykal A. Synthesis and Magnetic Characterization of Cu Substituted Barium Hexaferrites// Journal of Inorganic and Organometallic Polymers and Materials, 2018, Vol. 28, #3, pp. 1065–1071.
41. Kojima H. Fundamental properties of hexagonal ferrites with magnetoplumbite structure// Handbook of Ferromagnetic Materials, 1982, 3, pp. 305–391.
42. K.C. Kao, Hwang W., Electrical transport in solids, wuth particular reference to orgainc semiconductorys// Pergamon Press, 1981.
43. A. Bakuzis, A. Pereira, J. Santos, Morais P. Superexchange coupling on oleylsarcosine-coated magnetite nanoparticles// Journal of Applied Physics, 2006, Vol. 99, #8, 08C301.
44. P. Desai, P. Shakya, T. Kreouzis, Gillin W.P. The role of magnetic fields on the transport and efficiency  of aluminum tris(8-hydroxyquinoline) based organic  light emitting diodes// Journal of Applied Physics, 2007, Vol. 102, #7, 073710.


Recommended articles