Content
Abstract:
Cobalt ferrite magnetic nanoparticles (CoFe2O4 MNPs) were successfully prepared by citric acid-assisted sol-gel auto combustion method and used in emissive layer of organic light emitting diode (OLED). Dimensional, structural and magnetic properties of CoFe2O4 nanoparticles (NPs) were recearched and compared by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). CoFe2O4 MNPs were utilized at various concentrations (0.5 wt%, 1.0 wt% and 2.0 wt%) in the emissive layer of the OLEDs. The luminance, current efficiency and the electroluminescence characteristics of the devices with and without CoFe2O4 MNPs were investigated. An external magnetic field, Bext, has also been applied to the OLEDs doped with MNPs while under operation. Effects of MNPs on OLED characteristics under Bext were studied thoroughly. In the tailored device architecture, poly (3,4-ethylenedioxythiophene): poly polystyrene sulphonate (PEDOT: PSS) and poly(2-methoxy-5-(2-ethylhexyloxy))-1,4-phenylene vinylene (MEH-PPV) were used as a hole transport layer (HTL) and an emissive layer respectively with ITO/PEDOT: PSS/ MEH-PPV: CoFe2O4/Ca/Al device architecture. The obtained results of the fabricated OLEDs were enhanced in the presence of CoFe2O4 NPs under Bext due to providing density of states in the polymer matrices. The turn-on voltage was diminished slightly in the device doped with 0.5 % wt MNP compared to the devices with other concentrations of MNPs.
References:
1. A. Köhler, J.S. Wilson, R.H. Friend, Fluorescence and phosphorescence in organic materials// Advanced Engineering Materials, 2002, Vol. 4, #7, 453p. 2. B.W. D’Andrade, S.R. Forrest, White organic light emitting devices for solid state lighting// Advanced Materials, 2004, Vol. 16, #18, pp. 1585–1595. 3. J. Feng, T. Okamoto, R. Naraoka, S. Kawata, Enhancement of surface plasmon-mediated radiative energy transfer through a corrugated metal cathode in organic light-emitting devices// Applied Physics Letters, 2008, Vol. 93, #5, 051106. 4. T. Ahn, H. Lee, S.-H. Han, Effect of annealing of polythiophene derivative for polymer light-emitting diodes// Applied physics letters, Vol. 80, #3, pp. 392–394. 5. A. Misra, P. Kumar, M. Kamalasanan, S. Chandra, White organic LEDs and their recent advancements// Semiconductor science and Technology, 2006, Vol 21, #7, R35. 6. S.-M. Seo, J.H. Kim, J.-Y. Park, H.H. Lee, Coordination-complex polymer as an organic conductor for organic light-emitting diodes// Applied Physics Letters, Vol. 87, #18,183503. 7. S.Y. Kim, J.M. Baik, H.K. Yu, K.Y. Kim, Y.-H. Tak, J.-L. Lee, Rhodium-oxide-coated indium tin oxide for enhancement of hole injection in organic light emitting diodes// Applied Physics Letters, 2005, Vol. 87, #7, 072105. 8. J.-H. Li, J. Huang, Y. Yang, Improved hole-injection contact for top-emitting polymeric diodes// Applied physics letters,2007, Vol. 90, #17, 173505. 9. M. Suzuki, S. Tokito, F. Sato, T. Igarashi, K. Kondo, T. Koyama, T. Yamaguchi, Highly efficient polymer light-emitting devices using ambipolar phosphorescent polymers// Applied Physics Letters, 2005, Vol. 86, #10, 103507. 10. M. Baldo, D. O’brien, M. Thompson, S. Forrest, Excitonic singlet-triplet ratio in a semiconducting organic thin film// 1999, Physical Review B, Vol. 60, #20, 14422. 11. B. Hu, Y. Wu, Z. Zhang, S. Dai, J. Shen, Effects of ferromagnetic nanowires on singlet and triplet exciton fractions in fluorescent and phosphorescent organic semiconductors// Applied physics letters, Vol. 88, #2, 022114. 12. P.P. Ruden, D.L. Smith, Theory of spin injection into conjugated organic semiconductors// Journal of applied physics, 2004, Vol. 95, #9, pp. 4898–4904. 13. P. Blom, M. De Jong, S. Breedijk, Temperature dependent electron-hole recombination in polymer lightemitting diodes// Applied Physics Letters,1997, Vol. 71, #7, pp. 930–932. 14. Z. Xu, Y. Wu, B. Hu, I.N. Ivanov, D.B. Geohegan, Carbon nanotube effects on electroluminescence and photovoltaic response in conjugated polymers// Applied Physics Letters, 2005, Vol. 87, #26, 263118. 15. Y. Cao, I.D. Parker, G. Yu, C. Zhang, A.J. Heeger, Improved quantum efficiency for electroluminescence in semiconducting polymers// Nature,1999, Vol. 397, #6718, pp. 414–417. 16. P.K. Ho, J.-S. Kim, J.H. Burroughes, H. Becker, S.F. Li, T.M. Brown, F. Cacialli, R.H. Friend, Molecularscale interface engineering for polymer light-emitting diodes// Nature, 2000, Vol. 404, #6777, pp. 481–484. 17. M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. Vardeny, Formation cross-sections of singlet and triplet excitons in π-conjugated polymers// Nature, 2001, Vol. 409, #6819, pp. 494–497. 18. J. Wilson, A. Dhoot, A. Seeley, M. Khan, A. Köhler, R. Friend, Spin-dependent exciton formation in π-conjugated compounds// Nature, 2001, Vol. 413, #6858, pp. 828–831. 19. Z. Shuai, D. Beljonne, R. Silbey, J.-L. Brédas, Singlet and triplet exciton formation rates in conjugated polymer light-emitting diodes// Physical review letters, 2000, Vol. 84, #1, 131. 20. M.N. Kobrak, E.R. Bittner, Quantum molecular dynamics study of polaron recombination in conjugated polymers// Physical Review B, 2000, Vol. 62, #17, 11473. 21. T.-M. Hong, Meng H.-F. Spin-dependent recombination and electroluminescence quantum yield in conjugated polymers// Physical Review B, 2001, Vol. 63, #7, 075206. 22. V. Cleave, G. Yahioglu, P.L. Barny, R.H. Friend, Tessler N. Harvesting singlet and triplet energy in polymer LEDs// Advanced Materials, 1999, Vol. 11, #4, pp. 285–288. 23. C.-J. Sun, Y. Wu, Z. Xu, B. Hu, J. Bai, J.-P. Wang, Shen J. Enhancement of quantum efficiency of organic light emitting devices by doping magnetic nanoparticles// Applied physics letters, 2007, Vol. 90, #23, 232110. 24. E.L. Frankevich, Balabanov E.L. New effect of increasing the photoconductivity of organic semiconductors in a weak magnetic field// ZhETF Pisma Redaktsiiu, 1965, Vol. 1, #6, pp. 33–37. 25. E. Frankevich, The nature of a new effect of a change in the photoconductivity of organic semiconductors in a magnetic field, Soviet Physics JETP// 1966, Vol. 23, #5, pp. 1226–1234. 26. E.L. Frankevich, E.L. Balabanov, Changes in photoconductivity of an anthracene single crystal in amagnetic field// Solid State Physics, 1966, Vol. 8, #3, pp. 855–889. 27. E. Frankevich, E.L. Balabanov, G.V. Vselyubskaya, Investigation of change in photoconductivity of organic semiconductors in a magnetic field//Solid State Physics, 1966, Vol. 8, pp. 1970–1973. 28. J. Kalinowski, J. Szmytkowski, Stampor W. Magnetic hyperfine modulation of charge photogeneration in solid films of Alq 3// Chemical physics letters, 2003, Vol. 378, #3, pp. 380–387. 29. J. Kalinowski, M. Cocchi, D. Virgili, P. Di Marco, Fattori V. Magnetic field effects on emission and current in Alq 3-based electroluminescent diodes// Chemical Physics Letters, 2003, Vol. 380, #5, pp. 710–715. 30. A.H. Davis, Bussmann K. Large magnetic field effects in organic light emitting diodes based on tris (8-hydroxyquinoline aluminum)(Alq 3)/N, N′Di (naphthalen-1-yl)-N, N′ diphenyl-benzidine (NPB) bilayers// Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2004, Vol. 22, #4, pp. 1885–1891. 31. T. Francis, Ö. Mermer, G. Veeraraghavan, Wohlgenannt M. Large magnetoresistance at room temperature in semiconducting polymer sandwich devices// New Journal of Physics, 2004, Vol. 6, #1, 185. 32. Ö. Mermer, G. Veeraraghavan, T. Francis, Y. Sheng, D. Nguyen, M. Wohlgenannt, A. Köhler, M.K. Al-Suti, Khan M., Large magnetoresistance in nonmagnetic π-conjugated semiconductor thin film devices// Physical Review B, 2005, Vol. 72, #20, 205202. 33. V. Prigodin, J. Bergeson, D. Lincoln, Epstein A. Anomalous room temperature magnetoresistance in organic semiconductors// Synthetic Metals,2006, Vol. 156, #9, pp. 757–761. 34. P. Desai, P. Shakya, T. Kreouzis, W. Gillin, N. Morley, Gibbs M. Magnetoresistance and efficiency measurements of Al q 3-based OLEDs// Physical Review B, Vol. 75, #9, 094423. 35. P. Bobbert, T. Nguyen, F. Van Oost, V.B. Koopmans, Wohlgenannt M. Bipolaron mechanism for organic magnetoresistance// Physical Review Letters, 2007, Vol. 99, #21-216801. 36. H. Kavas, A. Baykal, A. Demir, M.S. Toprak, Aktaş B. ZnxCu (1– x) Fe2O4 Nanoferrites by Sol–Gel Auto Combustion Route: Cation Distribution and Microwave Absorption Properties// Journal of Inorganic and Organometallic Polymers and Materials, 2014, Vol. 24, #6, pp. 963–970. 37. Pielaszek R. Analytical expression for diffraction line profile for polydispersive powders, Applied Crystallography// Proceedings of the XIX Conference, World Scientific, Singapore, 2004, pp. 43–50. 38. T. Wejrzanowski, R. Pielaszek, A. Opalińska, H. Matysiak, W. Łojkowski, Kurzydłowski K. Quantitative methods for nanopowders characterization// Applied Surface Science, 2006, Vol. 253, #1, pp. 204–208. 39. K. Venkatesan, D.R. Babu, M.P.K. Bai, R. Supriya, R. Vidya, S. Madeswaran, P. Anandan, M. Arivanandhan, Hayakawa Y. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications// International journal of nanomedicine, 2015, Vol. 10, Suppl 1, 189. 40. S. Asiri, S. Güner, A. Demir, A. Yildiz, A. Manikandan, Baykal A. Synthesis and Magnetic Characterization of Cu Substituted Barium Hexaferrites// Journal of Inorganic and Organometallic Polymers and Materials, 2018, Vol. 28, #3, pp. 1065–1071. 41. Kojima H. Fundamental properties of hexagonal ferrites with magnetoplumbite structure// Handbook of Ferromagnetic Materials, 1982, 3, pp. 305–391. 42. K.C. Kao, Hwang W., Electrical transport in solids, wuth particular reference to orgainc semiconductorys// Pergamon Press, 1981. 43. A. Bakuzis, A. Pereira, J. Santos, Morais P. Superexchange coupling on oleylsarcosine-coated magnetite nanoparticles// Journal of Applied Physics, 2006, Vol. 99, #8, 08C301. 44. P. Desai, P. Shakya, T. Kreouzis, Gillin W.P. The role of magnetic fields on the transport and efficiency of aluminum tris(8-hydroxyquinoline) based organic light emitting diodes// Journal of Applied Physics, 2007, Vol. 102, #7, 073710.
Keywords
Recommended articles