Content
Number of images - 7
Tables and charts - 6
Determination of Energy Consumption According to Wireless Network Topologies in Grid-Free Lighting Systems L&E 28 (2) 2020

Light & Engineering 28 (2)

Volume 28
Date of publication 04/13/2020
Pages 67–76

Purchase PDF - $6

Determination of Energy Consumption According to Wireless Network Topologies in Grid-Free Lighting Systems L&E 28 (2) 2020
Articles authors:
Musa Çıbuk, Mehmet Sait Cengiz

Musa Çıbuk, received his M. Sc. and Ph. D. degrees from Fırat University, Turkey in 2002  and 2009, respectively. His research interests include WSNs, MAC, Computer Networks, Digital Communication and Image Processing. He worked at the University of Fırat between 2000 and 2010. He is currently working at Bitlis Eren  University, in position of Head of Department at Computer Engineering

Mehmet Sait Cengiz, Ph.D. He works in the field of applied lighting technologies and architectural lighting

Abstract:
While Wireless Sensor Networks (WSN) are used in various areas nowadays, they also come in front of us in the remote follow up and management of especially main street, road and city lighting systems and in autonomous applications relating with them.
This study has been conducted with the aim to determine the energy consumed by Wireless Sensor Network (WSN) based monitoring and management systems as per topological sequence of lighting systems with renewable energy sources (RES) in a grid-free environment. In this way it was aimed to maximize the life time of WSN which are formed by minimum energy consumption of lighting elements that store energy with accumulator-battery in grid-free RES lighting systems and which use this energy later on. Physical installation of lighting systems having different topological distributions will  show differences with respect to costs, labour force  and time. Starting from here on, different topologies  for grid-free lighting systems have been created in simulation environment and they have been analyzed and an optimal solution has been searched for. Energy consumptions of each lighting system having linear, random and tree lighting topology have been determined during data exchange. For each topology lighting systems with 25, 50, 100 and 200 armatures have been designed and their energy consumptions for data exchange have been found. It has been seen that data packages were influenced at first degree from node hopping numbers within topology and as being parallel to this, it has been seen that topology consuming most energy was linear lighting and that topology consuming minimum energy was tree lighting.
References:
1. Arı, D., Çıbuk, M., Ağgün, F., Effect of Relay Priority Mechanism on Multi hop Wireless Sensor Networks, Bitlis Eren University Journal of Science and Technology, 2017, V7, #2, pp. 145–153.
2. Çıbuk, M., Tek Atlamalı Kablosuz Algılayıcı  Ağlarda Yeni Bir Hızlı Ağa Katılım Algoritması, Bitlis  Eren Üniversitesi Fen Bilimleri Dergisi, 2018, V7, #1, pp. 72–83.
3. A. Shrestha, L., Xing, A., Performance Comparison of Different Topologies for Wireless Sensor Networks, 2007 IEEE Conf. Technol. Homel. Secur, 2007, pp. 280–285.
4. Q. Mamun, A Qualitative Comparison of Different  Logical Topologies for Wireless Sensor Networks Sensors, 2012, V12, #12, pp. 14887–14913.
5. Karun R., Johny M., Street Light Commander System Using Zigbee Network of Devices. 2014, V4, #4, pp. 165–169.
6. Srinath V., Srinivas S., Street Light Automation Controller using Zigbee Network and Sensor with Accident Alert System. International Journal of Current Engineering and Technology, 2015, V5, #4, pp. 2819– 2823.
7. Bhargavi, R., Pavitra, B., Development of Automatic Street Light Illumination and Vehicle Speed Controlling System on Arm7 for Roadways, Int J Res Adv Eng. Technol, 2016, V5, #3, pp. 16–22.
8. Journal I, Technology S, Dp T, Prof SOEP, Pune TDPSOE, Remotely Control High Energy Efficient Automatic Street Lighting System. 2015. V1, #11, pp. 43–46.
9. Caponetto, R., Dongola, G., Fortuna, L., Riscica, N., Zufacchi, D., Power consumption reduction in a remote controlled street lighting system. Int Symp Power Electron Electr Drives, Autom Motion, 2008. pp. 428–433.
10. Chen, Y., Liu, Z., Distributed intelligent city street lamp monitoring and control system based on wireless communication chip nRF401. Proc – Int Conf Networks Secur Wirel Commun Trust Comput, 2009. V2, pp. 278–281.
11. Lin J, Jin X, Mao Q, 2009. Wireless monitoring system of street lamps based on ZigBee. Proc – 5th Int Conf Wirel Commun Netw Mob Comput, 2009. pp. 2–4.
12. Jun, L., Cangxu, F., Xuesong, S., Aijun, Y., Street lamp control system based on power carrier wave. Proc-2nd 2008 Int Symp Intel Inf Tech Appl Work IITA 2008, pp. 184–188.
13. Nordic Semiconductor: nRF905 Single chip 433/868/915MHz Transceiver, 2019. http://infocenter. nordicsemi.com/pdf/nRF905_PS_v1.5.pdf (02.02.2019)
14. Özkaya, M., 1994. Aydınlatma Tekniği, Birsen  Yayınevi, İstanbul-1994, 91.
15. TSE standard: TS EN13201–2, Road lighting –  Part 2: Performance requirements (Effective date:  09.12.2016).
16. Cengiz M.S., A Simulation and Design Study for Interior Zone Luminance in Tunnel Lighting, Light & Engineering. 2019, V27, #2, pp. 42–51.
17. Tetri, E., Chenani, S.B., Rasanen R.S., Advancement in Road Lighting, Light & Engineering, 2018, V26, #1, pp. 99–109.
18. Barua, P., Mazumdar, S., Chakraborty, S., Bhattacharjee, S. 2018. Road Classification Based Energy Efficient Design and its Validation for Indian Roads, Light & Engineering, 2018, V26, #2, pp. 110–121.
19. Cengiz M.S., Cengiz, Ç., Numerical Analysis of  Tunnel LED Lighting Maintenance Factor, IIUM Engineering Journal. 2018, V19, #2, pp. 154–163.
20. Iacomussi, Rossi, G., Soardo, P., 2012. Energy Saving and Environmental Compatibility in Road Lighting, Light & Engineering, 2012, V20, #4, pp. 55–63.
21. Van Bommel, W., Van Den Beld, G.,. Van Ooyen M., 2003. Industrial Light and Productivity, Lighting & Engineering, 2003, V11, #1, pp. 14–21.
22. Cengiz M.S., The Relationship Between Maintenance Factor and Lighting Level in Tunnel Lighting, Light & Engineering. 2019, V27, #3.
23. Cengiz M.S., Cengiz, Ç., Numeric Analysis for  the Efficiency of LED and Traditional Luminaries used  in Tunnel Lighting, International GAP Renewable Energy and Energy Efficiency Congress, 10–12 May 2018,  347–348.
24. Cengiz M.S., Cengiz, Ç., Mamiş, M.S., Contribution of Reflector Design formed by Numeric Calculations  to Energy Efficiency, International GAP Renewable Energy and Energy Efficiency Congress, 10–12 May 2018,  349–350.
25. Çıbuk, M., Arı, D., Ağgün, F., Relay Mechanism  with Three way Handshake for Wireless Sensor Networks, presented at the 8th International Advanced Technologies Symposium, Elazığ, 2017.
26. Arı, D., Çıbuk, M., Ağgün, F., A New Proxy Based  Network Joining Method for Linear Wireless Sensor Networks, presented at the International Engineering and Natural Sciences Conference (IENSC2018), Diyarbakır,  2018.
27. “Riverbed Models, 2018. Available at: https://www.riverbed.com/gb/products/steelcentral /steelcentral-riverbed-modeler.html. (Access date 28-Feb.-2019).
28. Hammoodi, I.S., Stewart, B.G., Kocian, A., McMeekin, S.G., A comprehensive performance study of OPNET modeler for ZigBee wireless sensor networks, 3rd Int. Conf. Next Gener. Mob. Appl. Serv. Technol. 2009, pp. 357–362.
Keywords

Buy

Recommended articles