Number of images - 3
Tables and charts - 0
The Impact of Light Polarisation on Light Field of Scenes with Multiple Reflections L&E 28 (1) 2020

Light & Engineering 28 (1)

Volume 28
Date of publication 02/20/2020
Pages 108–115

Purchase PDF - $6

The Impact of Light Polarisation on Light Field of Scenes with Multiple Reflections L&E 28 (1) 2020
Articles authors:
Vladimir P. Budak, Anton V. Grimaylo

Vladimir P. Budak, Professor, Doctor of Technical Sciences. In 1981, he graduated from the Moscow Power Engineering Institute (MPEI). At present, he is the Editor-in-chief of the Svetotekhnika / Light & Engineering journal, Professor of the Light and Engineering Chair of NRU MPEI. Corresponding member of the Academy of Electrotechnical Sciences of Russia

Anton V. Grimaylo, Master Student of NRU MPEI (Light Engineering sub-department)

The article describes the role of polarisation in calculation of multiple reflections. A mathematical model of multiple reflections based on the Stokes vector for beam description and Mueller matrices for description of surface properties is presented. On the basis of this model, the global illumination equation is generalised for the polarisation case and is resolved into volume integration. This allows us to obtain an expression for the Monte Carlo method local estimates and to use them for evaluation of light distribution in the scene with consideration of polarisation. The obtained mathematical model was implemented in the software environment using the example of a scene with its surfaces having both diffuse and regular components of reflection. The results presented in the article show that the calculation difference may reach 30 % when polarisation is taken into consideration as compared to standard modelling.
1. Mishchenko M.I., Lacis A.A., Travis L.D. Errors induces be the neglect of polarization in radiance calculations for Rayleigh-scattering atmospheres // Journal of Quantitative Spectroscopy and Radiative Transfer, 1994, Т. 51, № 3, pp. 491–510.
2. Wolff L.B., Kurlander D.J. Ray tracing with polarization parameter // IEEE Computer Graphics and Applications, 1990, Т. 10, № 6, pp. 44–55.
3. Wilkie A., Tobler R., Ulbricht C. et al. An analytical model for skylight polarization // Proceedings EGSR, 2004, pp. 387–399.
4. Ghosh A., Chen T., Peers P. et al. Circularly polarized spherical illumination reflectometry // ACM Transaction on Graphics, 2010, Т. 29, № 6, pp. 1–12.
5. Mojzik M., Skrivan T., Wilkie A., Krivanek J. BiDirectional Polarised Light Transport // Eurographics Symposium on Rendering. 2016.
6. Zhdanov D., Ershov S., Shapiro L., Sokolov V., Voloboy A. et al. Realistic image synthesis in presence of birefrigent media by backward ray tracing technique // Proc. SPIE10694, Computational Optics II, 106940D (28 May 2018)
7. Kozlov D.S., Debelov V.A. Algorithm for Photorealistic Rendering of Transparent Optically Active Isotropic Crystals // Programming and Computer Software, 2015, Т. 41, № 5, pp. 267–272.
8. Rosenberg G.V. Light Beam [Luch sveta] // Advances of Physics [Uspekhi fizicheskikh nauk], 1977, Vol. 121, Issue 1, pp. 97–138.
9. Apresyan L.A., Kravtsov Yu.A. The Theory of Radiation Transmission: Statistical and Wave Aspects [Teoriya perenosa izlucheniya: statisticheskiye i volnovyye aspekty] // Nauka. Chief editorial board of literature on physics and mathematics, Moscow, 1983, 216 p.
10. Stokes G.G. On the composition and resolution of streams of polarized light from different sources // Transactions of the Cambridge Philosophical Society. 1852, Т. IX. p. 399.
11. Rosenberg G.V. Stokes Parameter Vector [Vektorparametr Stoksa] // Advances of Physics [Uspekhi fizicheskikh nauk], 1955, Vol. LVI, Issue I, pp. 77–110.
12. Shurcliff W. Polarised Light [Polyarizovanniy svet] // Mir, Moscow, 1965, 264 p.
13. Prigarin S.M. The Basics of Statistical Modelling of Polarised Optical Radiation Transmission [Osnovy statisticheskogo modelirovaniya perenosa polyarizovannogo opticheskogo izlucheniya] // Study Guide, Novosibirsk State University, Novosibirsk, 2010, 109 p.
14. Budak V.P. Visualisation of Radiance Distribution in Three-Dimensional Scenes [Vizualizatsiya raspredeleniya yarkosti v tryokhmernykh stsenakh nablyudeniya] // MEI, Moscow, 2000, 136 p.
15. Kajiya J.T. The rendering equation // In Proceedings of SIGGRAPH, 1986, Т. 20, № 4, pp. 143–150.
16. Kalos M.H. On the Estimation of Flux at a Point by Monte Carlo // Nuclear Science and Engineering, 1963, Т. 16, № 1, pp. 111–117.
17. Budak V.P., Zheltov V.S., Kalatutskiy T.K. Monte Carlo Method Local Estimates in Solution of the Global Illumination Equation with Consideration of Spectral Representation of Objects [Lokalnyye otsenki metoda Monte Carlo v reshenii uravneniya globalnogo osveshcheniya s uchyotom spektralnogo predstavleniya obektov] // Computer Studies and Modelling [Komputernyye issledovaniya i modelirovaniye], 2012, Vol. 4, Issue 1, pp. 75–84.


Recommended articles