Content

Abstract:
The simulation program by the Monte Carlo method of pulse reactions of bistatic atmospheric aerosol-gas channels of optical-electronic communication systems (OECS) is created on the basis of the modified double local estimation algorithm. It is used in a series of numerical experiments in order to evaluate statistically the transfer characteristics of these channels depending on the optical characteristics of an atmosphere plane-parallel model for wavelengths ? = 0.3, 0.5, and 0.9 µm at a meteorological visibility range SM = 10 and 50 km. The results are obtained for a set of basic distances between the light source and the light receiver up to 50 km and for the angular orientations of the optical axes of a laser radiation beam and of the receiving system in a wide range of their values. The dependences of the pulse reactions maximum values over-the-horizon channels of the OECS on the variations of these parameters are established.
References:
1. Poller B.V., Britvin V.A., Kolomnikov J.D., Golovachev Yu.G., Konyaev S.I., Kusakina A.E., Shergunova N.A. Nekotory`e xarakteristiki rasprostraneniya lazerny`x signalov v usloviyax observatorii SO RAN ЂKajtanakї na gornom Altae [Some of the characteristics of laser signals propagation in Observatory of the Russian Academy of Sciences of УKaytanakФ in mountain Altai] // Interexpo geo-Siberia, 2012, Vol. 2, #4, pp. 64Ц68. 2. Haipeng D., Chen G., Arun K., Sadler B.M., Xu Z. Modeling of non-line-of-sight ultraviolet scattering channels for communication // IEEE journal on selected areas in communications, 2009, Vol. 27, #9, pp. 1535Ц1544. 3. Han D., Liu Y., Zhang K., Luo P., Zhang M. Theoretical and experimental research on diversity reception technology in NLOS UV communication system // Optics express, 2012, Vol. 20, #14, pp. 15 833Ц15 842. 4. Elshimy M.A., Hranilovic S. Non-line-of-sight single-scatter propagation model for noncoplanar geometries // JOSA A., 2011, Vol. 28, #3, pp. 420Ц428. 5. Borisov B.D., Belov V.V. Vliyanie pogodny`x uslovij na parametry` korotkogo lazernogo impul`sa, otrazhyonnogo atmosferoj [Influence of weather conditions on the parameters of short laser pulses reflected from the atmosphere] // Optika atmosfery` i okeana, 2011, Vol. 24, #4, pp. 263Ц268. 6. Belov V.V., Tarasenkov M.V., Abramochkin V.N., Ivanov V.V., Fedosov A.V., Troitskiy V.A., Shiyanov D.V. Atmosferny`e bistaticheskie kanaly` svyazi s rasseyaniem. Chast` 1. Metody` issledovaniya [Atmospheric bistatic communication channels with scattering. Part 1. Research methods] // Optika atmosfery` i okeana, 2013, Vol. 26, є 4, pp. 261Ц267. 7. Belov V.V., Tarasenkov M.V., Abramochkin V.N. Bistaticheskie atmosferny`e optiko-e`lektronny`e sistemy` svyazi (polevy`e e`ksperimenty`) [Bistatic atmospheric optoelectronic communication systems (field experiments)] // Pis`ma v ZhTF, 2014, Vol. 40, #19, pp. 89Ц95. 8. Abramochkin V.N., Belov V.V., Gridnev Yu.V., Kudryavtsev A.N., Tarasenkov M.V., Fedosov A.V. Optiko-e`lektronnaya svyaz` v atmosfere na rasseyannom lazernom izluchenii. Polevy`e e`ksperimenty` [Optical-electronic communication in the atmosphere on scattered laser radiation. Field experiments] // Svetotechnika, 2017, #4, pp. 24Ц30. 9. Belov V.V., Tarasenkov M.V. Tri algoritma statisticheskogo modelirovaniya v zadachax opticheskoj svyazi na rasseyannom izluchenii i bistaticheskogo zondirovaniya [Three algorithms of statistical simulation in tasks of optical communication for scattered radiation and bistatic sounding] // Optika atmosfery` i okeana, 2016, Vol. 29, #5, pp. 397Ц403. 10. Tarasenkov M.V., Belov V.V. Sravnenie trudoyomkosti algoritmov statisticheskogo modelirovaniya impul`snoj reakcii kanala bistaticheskoj lazernoj svyazi na rasseyannom izluchenii i bistaticheskogo lazernogo zondirovaniya [Comparison of complexity of algorithms of statistical simulation of the impulse response of the channel bistatic laser communication for scattered radiation and bistatic laser sounding] // Vy`chislitel`ny`e texnologii, 2017, Vol. 22, #3, pp. 91Ц102. 11. Marchuk G.I., Mikhailov G.A., Nazaraliev M.A., Darbinyan, R.A., Kargin B.A., Elepov B.S. Metod Monte-Karlo v atmosfernoj optike [Monte-Carlo in atmospheric optics] // Nauka, Siberian branch, Novosibirsk, 1976, 284 p. 12. Lotova G.Z. Modification of the double local estimate of the Monte Carlo method in radiation transfer theory // Russian Journal of Numerical Analysis and Mathematical Modeling, 2011, Vol. 26, #5, pp. 491Ц500. 13. Mikhailov G.A., Lotova G.Z. Chislenno-statisticheskaya ocenka potoka chasticz s konechnoj dispersiej [Numerical and statistical estimation of the particle flow with finite dispersion] // DAN, 2012, Vol. 447, #1, pp. 18Ц21. 14. Tarasenkov M.V., Belov V.V., Poznakhareva E.S. Modelirovanie processa peredachi informacii po atmosferny`m kanalam rasprostraneniya rasseyannogo lazernogo izlucheniya [Modeling of the process of information transfer in the atmospheric distribution of scattered laser radiation] // Optika atmosfery` i okeana, 2017, Vol. 30, #5, pp. 371Ц376. 15. Kneizys F.X., Shettle E.P., Anderson G.P., Abreu L.W., Chetwynd J.H., Selby J.E.A., Clough S.A., Gallery W.O. User Guide to LOWTRAN-7. ARGL-TR-86-0177. ERP 1010. Hansom AFB. MA 01731, 1988, 137 p. 16. Anisimov I.I., Glukhovskij, B.M. Fotoe`lektronny`e umnozhiteli [Photomultipliers] // Sov. Radio, Moscow, 1974, 61 p. 17. Aksenenko M.D., Baranochnikov M.L. Priyomniki opticheskogo izlucheniya: spravochnik [Optical radiation Receivers: Handbook] // Radio i svyaz`, Moscow, 1987, 296 p. 18. Soboleva N.A. Melamid, A.E. Fotoe`lektronny`e pribory` [Photoelectronic devices] // Vy`ssh. shkola, Moscow, 1974, 376 p. 19. Vasiliev A.F., A.M. Chmutin. Fotoe`lektricheskie priyomniki izlucheniya [Photoelectric radiation detectors] // VolGU, Volgograd, Russia, 2010, 81 p. 20. Chechik N.O., Feinstein S.M., Lifshitz T.M. E`lektronny`e umnozhiteli. Pod red. D.V. Zernova [Electronic multipliers. Edited by D.V. Zernov] // GITTL, Moscow, 1957, 576 p. 21. Gurevich M.M. Fotometriya (teoriya, metody` i pribory`) [Photometry (theory, methods and devices)] // Energoatomizdat, Leningrad, USSR, 1983, 272 p. 22. Belov V.V., Tarasenkov M.V., Piskunov K.P. Parametricheskaya model` solnechnoj dy`mki v vidimoj i UF-oblasti spectra [Parametric model of solar haze in the visible and UV region of the spectrum] // Optika atmosfery` i okeana, 2010, Vol. 23, #4, pp. 294Ц297.
Keywords
- atmosphere
- scattered laser radiation
- bistatic (over-horizon) optical communication
- limit base distances
- limit pulse transmission frequency
Recommended articles
Optoelectronic Communication in the Atmosphere Using Diff use Laser Radiation Experiments in the Field. L&E 25 (4) 2017
Bistatic Underwater Optical-Electronic Communication: Field Experiments of 2017-2018. L&E 27 (5) 2019
Optical Communication on Scattered or Reflected Laser Radiation. L&E 27 (№1. 2019)