Content

Abstract
A review of the main modern achievements is presented in development, production and application of UV bactericidal lamps and irradiating installations with their use to disinfect water, air and surfaces. It is shown that LIT NPO takes a worthy place among most large-scale global manufacturers of such lamps and installations.
References
1. Karmazinov F.V., Kostyuchenko S.V., Kudryavtsev N.N., Hramenkov S.V. Ultra-violet technologies in the modern world: A collective monograph / Dolgoprudny: Intellekt Publishing House, 2012, 392 p. 2. Alshin V.M., Bezdelin S.M., Volkov S.V., Gilbukh A. Ya., Drozhzhin V.V., Zhukov V.I., Kalinsky A.V., Kostyuchenko S.V., Kudryavtsev N.I., Kurkin G.A., Smirnov A.D., Yakimenko A.V . Application of UV water irradiation technology instead of primary chlorination // Water supply and sanitary engineering// 1996, #12, pp. 13–16. 3. Sanitary regulations and standards SanPiN2.1.5.980–00. 2.1.5. “Water disposal of the inhabited places, sanitary protection of water objects. Hygienic requirements to protection of surface water. Health regulations and standards”. 4. Novikov Yu. V., Tsyplakov G.V., Tulakin A.V., Ampleeva G.P., Trukhina G.M., Korolyov A.A., Bogdanov M.V., Zholdakova Z.I., Kostyuchenko S.V., Yakimenko A.V. Hygienic aspects of sewage water disinfection using ultra-violet radiation // Hygiene and sanitation. 2000, #1, pp. 12–14. 5. Sanitary regulations and standards СанПиН 2.1.4.1074–01 “Drinking water. Hygienic requirements to water quality of centralised systems of drinkable water supply. Quality control. Hygienic requirements to safety of hot water supply”. 6. Dziminkas Ch. A, Kostyuchenko S.V . Consolidation of modern technologies when preparing drinking water at Sludnensky waterwork. Nizhny Novgorod // Water purification Water treatment Water supply, 2011, #3, pp.52–60. 7. Kostyuchenko S.V., Nefedov Yu. I., Zaytseva S.G. Experience of water services of St. Petersburg when introducing safe disinfection technologies of drinking water // Water purification. Water treatment. Water supply. 2008, #17, pp. 43–49. 8. Chyornei G., Kudryavtsev N.N., Kostyuchenko S.V., Volkov S.V., Khan A.S., Levchenko D.A. Multibarrier disinfection system. Introduction of modern disinfection methods when preparing drinking water in the system of centralised water supply of Budapest // Voda Magazine, 2012, #1. 9. Kostyuchenko S.V., Volkov S.V., Kuzmin A.V., Lysyi E.O., Ortel E., Davydov D.V., Tkachyov A.A., Baranov V.L. Experience of introducing modern disinfection systems using ultra-violet radiation in Beijing (People’s Republic of China) //Voda Magazine. 2017, #5, pp. 16–19. 10. Kovalsky W.J. Ultraviolet Germicidal Irradiation Handbook. Berlin: Springer, 2009. 11. Vilk M.F., Polyakova V.A., Lebedeva N.S., Gipp E.K., Bolshakov B.V., Karev A.V., Kostyuchenko S.V., Dubrovskaya T.A., Yershov A.V., Kudryavtsev N.N. Application of ultra-violet irradiation of air in Moscow underground // Hygiene and sanitary. 2007, #2, pp. 17–23. 12. Vasserman A.L., Shandala M.G., Yuzbashev V.G. Ultra-violet radiation for prevention of infection diseases. Moscow: Meditsina, 2003, 208 p. 13. Sanitary regulations and standards SanPiN2.1.3.2630–10 “Sanitary and epidemiologic requirements to the organisations accomplishing medical activity”. 14. Advanced Oxidation Processes for Water and Wastewater Treatment / Ed. by S. Parson, 2004, IWA Publishing, ISBN: 1-843390175. 15. UV LED market to grow from $90m to $520m in 2019 // Semiconductor today, 2015, Vol.10, issue 1, Feb., pp. 80–81. 16. Kneissl M., Kolbe T., Wurtele M., Hoa E. Development of UV–LED Disinfection: Report within WP2.5: Compact Units for Decentralised Water Supply. Techneau. Feb., 2010. 17. Pagan J. UV–C LEDs versus Mercury Vapor – A System Level Comparison / Proc. IUVA Congress, Vanсouver, 2016. 18. Beck S.E., Jeanis K.M., Inden K.G., Ryu H., Boczek L., Cashdollar J., Lawal O.R. Optimizing Pathogen Inactivation at Low Energy Cost with a Tailored, Multiple-Wavelength UV LED Unit / Proc. IUVA Congress, Vanсouver, 2016. 19. URL: https://www.aquisense.com/ (addressing date: 20.06.2017) 20. Moe С. UV–C Light Emitting Diodes // Radtech Report. 2014, Issue 1, pp. 45–49. 21. Pagan J., Lawal O. Coming of age – UVC–LED Technology Update // IUVA news. 2015, Vol. 17, Issue 1. 22. Pagan J., Lawal O. Proposed Testing Protocol for Measurement of UV–C LED Lamp Output // IUVA news, 2015, Vol. 17, Issue 2, 9 p. 23. Reference book on lighting engineering / Under the editorship of Yu.B. Ayzenberg. The 3rd revised edition, Moscow: Znak, 2006, 972 p. 24. van der Meer М., van Lierop F., Sokolov D. The analysis of modern low pressure amalgam lamp characteristics. URL: http://www.dafp.de/wp-content/uploads/2015/10/The-analysis-of-modern-low-pressure-amalgam-characteristics.pdf (addressing date: 20.06.2017). 25. Vasilyak L.M., Vasserman A.L. Disinfection of air and surfaces using pulse UV radiation // Hi+Med. High technologies in medicine, 2014, V. 5, #27.
Keywords
- UV radiation
- UV irradiation
- mercury lamp
- amalgam lamp
- UV radiating diode
- UV installation
- UV station
- LIT NPO
Recommended articles
On the Effectiveness of Modern Low-pressure Amalgam Lamps. L&E 26 (3) 2018
Testing and Analysis of Characteristics of Low-Pressure Mercury and Amalgam Bactericidal UV Lamps by Various Manufacturers. L&E 27 (6) 2019